Rapeseed is a popular cover crop choice due to its deep-growing taproot, which creates soil macropores and increases water infiltration. Brassicaceae spp. that are mature or at later growth stages can be troublesome to control. Experiments were conducted in Delaware and Virginia to evaluate herbicides for terminating rapeseed cover crops. Two separate experiments, adjacent to each other, were established to evaluate rapeseed termination by 14 herbicide treatments at two timings. Termination timings included an early and late termination to simulate rapeseed termination prior to planting corn and soybean, respectively, for the region. At three locations where rapeseed height averaged 12 cm at early termination and 52 cm at late termination, glyphosate + 2,4-D was most effective, controlling rapeseed 96% 28 d after early termination (DAET). Paraquat + atrazine + mesotrione (92%), glyphosate + saflufenacil (91%), glyphosate + dicamba (91%), and glyphosate (86%) all provided at least 80% control 28 DAET. Rapeseed biomass followed a similar trend. Paraquat + 2,4-D (85%), glyphosate + 2,4-D (82%), and paraquat + atrazine + mesotrione (81%) were the only treatments that provided at least 80% control 28 d after late termination (DALT). Herbicide efficacy was less at Painter in 2017, where rapeseed height was 41 cm at early termination, and 107 cm at late termination. No herbicide treatments controlled rapeseed >80% 28 DAET or 28 DALT at this location. Herbicide termination of rapeseed is best when the plant is small; termination of large rapeseed plants may require mechanical of other methods beyond herbicides.
Cotton growers commonly use glufosinate-based programs to control glyphosate-resistant Palmer amaranth. Palmer amaranth must be small (≤7.5 cm) for consistent control by glufosinate, and growers often miss the optimum application timing. XtendFlex™cotton may provide growers a tool to control larger Palmer amaranth. Glufosinate, dicamba, and glufosinate plus dicamba were compared for Palmer amaranth control in a rescue situation. Herbicides were applied to 16- to 23-cm weeds (POST-1) followed by a second application (POST-2) 12 d later. Glufosinate-ammonium at 590 g ai ha−1plus dicamba diglycolamine salt at 560 g ae ha−1POST-1 followed by glufosinate plus dicamba POST-2 was more effective than glufosinate at 880 g ha−1POST-1 followed by glufosinate at 590 g ha−1POST-2 or dicamba alone applied twice. Following a directed layby application of glyphosate, diuron, andS-metolachlor 14 d after POST-2, Palmer amaranth was controlled 99% by any system containing dicamba or glufosinate plus dicamba POST-1 followed by dicamba, glufosinate, or glufosinate plus dicamba POST-2 compared with 87% to 91% control by glufosinate alone applied twice. Cotton height and number of main stem nodes at layby were reduced in systems with dicamba only POST-1 followed by dicamba or glufosinate plus dicamba POST-2, presumably due to competition from the slowly dying Palmer amaranth with dicamba only POST-1. These treatments also delayed cotton maturity and reduced lint yield compared with systems containing glufosinate plus dicamba at POST-1.
Glufosinate controls glyphosate-resistant Palmer amaranth, but growers struggle to make timely applications. XtendFlexTMcotton, resistant to dicamba, glufosinate, and glyphosate, may provide growers an option to control larger weeds. Palmer amaranth control and cotton growth, yield, and fiber quality were evaluated in a rescue situation created by delaying the first POST herbicide application. Treatments consisted of two POST applications of dicamba plus glufosinate, separated by 14 d, with the first application timely (0-d delay) or delayed 7, 14, 21, or 28 d. All treatments included a layby application of diuron plus MSMA. Palmer amaranth, 14 d after first POST, was controlled 99, 96, 89, 75, and 73% with 0-, 7-, 14-, 21-, or 28-d delays, respectively. Control increased following the second application, and the weed was controlled at least 94% following layby. Cotton yield decreased linearly as first POST application was delayed, with yield reductions ranging from 8 to 42% with 7- to 28-d delays. Delays in first POST application delayed cotton maturity but did not affect fiber quality.
Residual herbicides are routinely applied to control troublesome weeds in pumpkin production. Fluridone and acetochlor, Groups 12 and 15 herbicides, respectively, provide broad-spectrum PRE weed control. Field research was conducted in Virginia and New Jersey to evaluate pumpkin tolerance and weed control to PRE herbicides. Treatments consisted of fomesafen at two rates, ethalfluralin, clomazone, halosulfuron, fluridone, S-metolachlor, acetochlor emulsifiable concentrate (EC), acetochlor microencapsulated (ME), and no herbicide. At one site, fluridone, acetochlor EC, acetochlor ME, and halosulfuron injured pumpkin 81%, 39%, 34%, and 35%, respectively, at 14 d after planting (DAP); crop injury at the second site was 40%, 8%, 19%, and 33%, respectively. Differences in injury between the two sites may have been due to the amount and timing of rainfall after herbicides were applied. Fluridone provided 91% control of ivyleaf morningglory and 100% control of common ragweed at 28 DAP. Acetochlor EC controlled redroot pigweed 100%. Pumpkin treated with S-metolachlor produced the most yield (10,764 fruits ha–1) despite broadcasting over the planted row; labeling requires a directed application to row-middles. A separate study specifically evaluated fluridone applied PRE at 42, 84, 126, 168, 252, 336, and 672 g ai ha–1. Fluridone resulted in pumpkin injury ≥95% when applied at rates of ≥168 g ai ha–1; significant yield loss was noted when the herbicide was applied at rates >42 g ai ha–1. We concluded that fluridone and acetochlor formulations are unacceptable candidates for pumpkin production.
A field study was conducted in 2017 and 2018 to determine foliar efficacy of halauxifen-methyl, 2,4-D, or dicamba applied alone and in combination with glyphosate at preplant burndown timing. Experiments were conducted near Painter, VA, Rocky Mount, NC, Jackson, NC, and Gates, NC. Control of horseweed, henbit, purple deadnettle, cutleaf evening primrose, curly dock, purple cudweed, and common chickweed were evaluated. Halauxifen-methyl applied at 5 g ae ha-1 controlled small and large horseweed 89% and 79%, respectively, and was similar to control by dicamba applied at 280 g ae ha-1. Both rates of 2,4-D at 533 (Low Rate, LR) or 1066 (High Rate, HR) g ae ha-1 were less effective than halauxifen-methyl and dicamba for controlling horseweed. Halauxifen-methyl was the only auxin herbicide to control henbit (90%) and purple deadnettle (99%). Cutleaf eveningprimrose was controlled 74 to 85%, 51%, and 4% by 2,4-D, dicamba, and halauxifen-methyl, respectively. Dicamba and 2,4-D controlled curly dock 59 to 70% and were more effective than halauxifen-methyl (5%). Auxin herbicides applied alone controlled purple cudweed and common chickweed ≤ 21%. With the exception of cutleaf evening primrose (35%) and curly dock (37%), glyphosate alone provided ≥ 95% control of all weeds evaluated. These experiments demonstrate halauxifen-methyl effectively (≥ 79%) controls horseweed, henbit, and purple deadnettle, whereas common chickweed, curly dock, cutleaf evening-primrose, and purple cudweed control by the herbicide is inadequate (≤ 7%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.