This work reports on vertical nanowire FET devices (VNWFETs) with a gate-all-around (GAA) configuration, which offer new, promising opportunities to enable further CMOS scaling and increased layout efficiency. Compared to triple-gate finFETs or lateral GAA-NWFETs, these devices are shown to have the potential for exhibiting lower parasitic RC and reduced power consumption at 5nm node design rules. They can also allow up to 30% denser SRAM bitcells with improved read and write stability, smaller minimum operating voltages (Vmin), and lower standby leakage values. A comprehensive overview of some key integration aspects for VNWFET fabrication will also be addressed here, covering: VNW arrays, gate/top electrodes, and bottom/top isolation layers formation. In addition, we also present alternative solutions to obtain improved process control and to overcome etch-layout dependences which are especially critical within the context of vertical device integration using a channel-first approach.
3D die stacking is a promising technique to allow miniaturization and performance enhancement of electronic systems. Key technologies for realizing 3D interconnect schemes are the realization of vertical connections, either through the Si die or through the multilayer interconnections. The complexity of these structures combined with reduced thermal spreading in the thinned dies complicate the thermal analysis of a stacked die structure. In this paper a methodology is presented to perform a detailed thermal analysis of stacked die packages including the complete back end of line structure (BEOL), interconnection between the dies and the complete electrical design layout of all the stacked dies. The calculations are performed by 3D numerical techniques and the approach allows importing the full electrical design of all the dies in the stack. The methodology is demonstrated on a 2 stacked die structure in a BGA package. For this case the influence of through-Si vias (TSVs) on the temperature distribution is studied. The modeling results are experimentally validated with a dedicated test vehicle. A thermal test chip with integrated heaters and diodes as thermals sensors is used to successfully validate the detailed temperature profile of the hot spots in the top die of the die stack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.