DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
Gaussian-like filters are frequently used in digital signal transmission. Usually, these filters are made of lumped inductors and capacitors. In the stopband, these filters exhibit a high reflection, which can create unwanted signal interference. To prevent that, a new low-reflection ladder network is introduced that consist of resistors, inductors, and capacitors. The network models fictitious transmission lines with Gaussian-like amplitude characteristics. Starting from the analysis of this network, a procedure is developed for synthesis of a new class of lumped-element RLC filters. These filters have transmission coefficients similar to the classical Bessel filters. In contrast to the Bessel filters, the new filters exhibit a low reflection both in the stopband and passband, they have a small span of element parameters, and they are easy for manufacturing and tuning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.