The first long shutdown (LS1) of the LHC machine at CERN started in February 2013. The main trigger for LS1 was the consolidation of the bus bar joints in the 13-kA superconducting magnet circuits. Before LS1, the copper continuity of these joints was not sufficiently good to ensure a safe passage of the current in case of a quench in the superconducting cable at currents larger than 7-8 kA. The consolidation mainly consists in adding shunts made of high conductivity copper across each joint connecting the bus bars of the neighboring magnets in order to ensure the copper continuity. After LS1, the LHC can then be operated up to the original nominal conditions, i.e., a collision energy of 14 TeV. There are 1695 interconnects, each containing six 13-kA joints, of which two belong to the main dipole circuit and four to the main quadrupole circuits. This paper describes the different steps of the consolidation work performed on the 10 170 magnet-to-magnet joints. The work on the splices proper has been organized in the form of a train made of six production teams, all together consisting of about 90 persons, including operators, supervision, and quality assurance. The work flow is managed with the help of a web-based tool called WISH. This paper describes as well the quality control and quality assurance methods put in place to ensure the quality of the work throughout the project, and it summarizes the benefits of the consolidation work in terms of copper continuity, operation margin, and robustness of the new insulation system. Index Terms-LHC long shutdown one, quality assurance, SMACC, superconducting splices.
The High luminosity LHC upgrade target is to increase the integrated luminosity by a factor 10, resulting in an integrated luminosity of 3000 fb-1. One major improvement foreseen is the reduction of the beam size at the collision points. This requires the development of 150 mm single aperture quadrupoles for the interaction regions. These quadrupoles are under development in a joint collaboration between CERN and the US-LHC Accelerator Research Program (LARP). The chosen approach for achieving a nominal quadrupole field gradient of 132.6 T/m is based on the Nb3Sn technology. The coils with a length of 7281 mm will be the longest Nb3Sn coils fabricated so far for accelerator magnets. The production of the long coils was launched in 2016 based on practise coils made from copper. This paper provides a status of the production of the first low grade and full performance coils and describes the production process and applied quality control. Furthermore an outlook for the prototype assembly is provided.
The High luminosity LHC upgrade target is to increase the integrated luminosity by a factor 10, resulting in an integrated luminosity of 3000 fb-1. One major improvement foreseen is the reduction of the beam size at the collision points. This requires the development of 150 mm single aperture quadrupoles for the interaction regions. These quadrupoles are under development in a joint collaboration between CERN and the US-LHC Accelerator Research Program (LARP). The chosen approach for achieving a nominal quadrupole field gradient of 132.6 T/m is based on the Nb3Sn technology. The coils with a length of 7281 mm will be the longest Nb3Sn coils fabricated so far for accelerator magnets. The production of the long coils was launched in 2016 based on practise coils made from copper. This paper provides a status of the production of the first low grade and full performance coils and describes the production process and applied quality control. Furthermore an outlook for the prototype assembly is provided.
Abstract. The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.