Tomato-infecting begomoviruses have been reported throughout Brazil since the introduction of the B biotype of Bemisia tabaci. Here, we report a large scale survey on the distribution and genetic diversity of tomato-infecting begomoviruses. Tomato samples with typical begomovirus symptoms were collected in seven different states, comprising the major tomato growing areas of the country. Viruses were detected by polymerase chain reaction (PCR) using universal primers for the genus Begomovirus. PCR-amplified fragments were cloned and sequenced. Based on sequence comparisons and phylogenetic analyses, at least seven previously undescribed species of begomoviruses were found. Four of the new viruses were found exclusively in the Southeastern states, two exclusively in the Northeastern states, and one was found in both regions. Sequence comparisons reveal strong evidence of recombination among the Brazilian begomoviruses. Together, the results indicate the existence of a high degree of pre-existing genetic diversity among tomato-infecting begomoviruses in Brazil and suggest that these viruses have emerged after being transferred from natural hosts to tomatoes, due to the introduction into Brazil of a novel polyfagous biotype of the whitefly vector.
Insect-transmitted viruses cause some of the most damaging and economically important diseases of crop plants, especially in tropical and subtropical regions. The geminiviruses, a group of single-stranded DNA viruses with unique twined icosahedral virus particles, are responsible for many of these diseases. Of particular importance are the geminiviruses transmitted by whiteflies (Bemisia tabaci), which are in the genus Begomovirus. This is the largest genus of plant viruses (in terms of number of species), and some are responsible for devastating diseases in vegetable and fiber crops throughout the world. This review presents the current understanding of begomoviruses, the diseases they cause, and approaches for disease management. An emphasis is placed on the most important begomovirus diseases in Brazil, which are those that affect common bean and tomato. However, because of the wide host range of the vector and the genetic flexibility of begomoviruses, these diseases pose a threat to many other crops. Therefore, the current situation with begomoviruses that infect okra, pepper, potato, sweet potato and soybean in Brazil is also discussed.
The sequence of the genome of a Rupestris stem pitting-associated virus (RSPaV) isolated from a declining Syrah grapevine in California, designated the Syrah strain (RSPaV-SY) was determined. The genome of this strain had an overall nucleotide identity of 77% in comparison with RSPaV sequences in GenBank; the coat protein was the most conserved gene among RSPaV sequences and the replicase was the least conserved gene. Phylogenetic analysis of partial coat protein and replicase gene sequences showed RSPaV-SY clustered independently from the majority of RSPaV isolates.
Although tomato golden mosaic virus (TGMV) was reported in Brazil more than 20 years ago (3), tomato-infecting geminiviruses have not been of economic significance in the country until recently. However, a sharp increase in the incidence of geminivirus-like symptoms in tomatoes has been reported in several areas of Brazil since 1994. This has coincided with the appearance of the B biotype of Bemisia tabaci, which, as opposed to the A biotype, readily colonizes solanaceous plants (2). We have isolated geminiviruses from symptomatic tomato plants in the Federal District, in two different areas of the state of Minas Gerais, and in the state of Pernambuco. Tomato plants in these areas showed a variety of symptoms, including yellow mosaic, severe leaf distortion, down-cupping, and epinasty. Whitefly infestation was high in all fields sampled, and in some fields, particularly in Pernambuco, incidence of virus-like symptoms was close to 100%, and no tomatoes of commercial value were harvested (1). Using primer pairs PAL1v1978/PAR1c496 and PCRc1/PBL1v2040 (4), DNA-A and -B fragments were polymerase chain reaction (PCR)-amplified from total DNA extracted from diseased plants, cloned, and sequenced. Sequence comparisons of the PCR fragments indicated the existence of at least six different geminiviruses. The nucleotide sequence homologies for DNA-A fragments ranged from 67 to 80% for the 5′ end of the cp gene, and from 44 to 80% for the 5′ end of the rep gene. Data base comparisons indicated the viruses are most closely related to TGMV, bean golden mosaic virus from Brazil (BGMV-Br), and tomato yellow vein streak virus (ToYVSV), although homologies were less than 80% for the fragments compared. A similar lack of a close relationship with each other and other geminiviruses was obtained with two DNA-B component PCR products compared, corresponding to the 5′ end of the BC1 open reading frame. Infectious, full-length genomic clones from the tomato viruses are being generated for biological and molecular characterization. References: (1) I. C. Bezerra et al. Fitopatol. Bras. 22:331, 1997. (2) F. H. França et al., Ann. Soc. Entomol. Bras. 25:369, 1996. (3) J. C. Matyis et al. Summa Phytopathol. 1:267, 1975. (4) M. R. Rojas et al. Plant Dis. 77:340, 1993.
Watermelon (Citrullus lanatus) cultivated in almost all tropical and subtropical regions of the world, has its largest output in China, and then, according to FAO data, Turkey, Iran and Brazil, being
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.