In perceptual discrimination tasks, a subject’s response time is determined both by sensory and motor processes. Measuring the time consumed by the perceptual evaluation step alone is thus complicated by factors such as motor preparation, task difficulty and speed-accuracy tradeoffs. Here we present a task design that minimizes these confounds and allows us to track a subject’s perceptual performance with unprecedented temporal resolution. We find that monkeys can make accurate color discriminations in less than 30 ms. Furthermore, our simple task design provides a novel tool for elucidating how neuronal activity relates to sensory versus motor processing, as demonstrated with neural data from cortical oculomotor neurons. In these cells, perceptual information acts by accelerating and decelerating the ongoing motor plans associated with correct and incorrect choices, as predicted by a race-to-threshold model, and the time course of these neural events parallels the time course of the subject's choice accuracy.
Neuronal activity in the frontal eye field (FEF) ranges from purely motor (related to saccade production) to purely visual (related to stimulus presence). According to numerous studies, visual responses correlate strongly with early perceptual analysis of the visual scene, including the deployment of spatial attention, whereas motor responses do not. Thus, functionally, the consensus is that visually responsive FEF neurons select a target among visible objects, whereas motor-related neurons plan specific eye movements based on such earlier target selection. However, these conclusions are based on behavioral tasks that themselves promote a serial arrangement of perceptual analysis followed by motor planning. So, is the presumed functional hierarchy in FEF an intrinsic property of its circuitry or does it reflect just one possible mode of operation? We investigate this in monkeys performing a rapid-choice task in which, crucially, motor planning always starts ahead of task-critical perceptual analysis, and the two relevant spatial locations are equally informative and equally likely to be target or distracter. We find that the choice is instantiated in FEF as a competition between oculomotor plans, in agreement with model predictions. Notably, although perception strongly influences the motor neurons, it has little if any measurable impact on the visual cells; more generally, the more dominant the visual response, the weaker the perceptual modulation. The results indicate that, contrary to expectations, during rapid saccadic choices perceptual information may directly modulate ongoing saccadic plans, and this process is not contingent on prior selection of the saccadic goal by visually driven FEF responses.
Choice behavior and its neural correlates have been intensely studied with tasks in which a subject makes a perceptual judgement and indicates the result with a motor action. Yet, a question crucial for relating behavior to neural activity remains unresolved: what fraction of a subject’s reaction time (RT) is devoted to the perceptual evaluation step, as opposed to executing the motor report? Making such timing measurements accurately is complicated because RTs reflect both sensory and motor processing, and because speed and accuracy may be traded. To overcome these problems, we designed the compelled-saccade task, a two-alternative forced-choice task in which the instruction to initiate a saccade precedes the appearance of the relevant sensory information. With this paradigm, it is possible to track perceptual performance as a function of the amount of time during which sensory information is available to influence a subject’s choice. The result — the tachometric curve — directly reveals a subject’s perceptual processing capacity independently of motor demands. Psychophysical data, together with modeling and computer-simulation results, reveal that task performance depends on three separable components: the timing of the motor responses, the speed of the perceptual evaluation, and additional cognitive factors. Each can vary quickly, from one trial to the next, or can show stable, longer-term changes. This novel dissociation between sensory and motor processes yields a precise metric of how perceptual capacity varies under various experimental conditions, and serves to interpret choice-related neuronal activity as perceptual, motor, or both.
Anatomically distinct areas within the basal ganglia encode flexible- and stable-value memories for visual objects (Hikosaka et al., 2014), but an important question remains: do they receive inputs from the same or different brain areas or neurons? To answer this question, we first located flexible and stable value-coding areas in the caudate head (CDh) and caudate tail (CDt) of two rhesus macaque monkeys, and then injected different retrograde tracers into these areas of each monkey. We found that CDh and CDt received different inputs from several cortical and subcortical areas including temporal cortex, prefrontal cortex, cingulate cortex, amygdala, claustrum and thalamus. Superior temporal cortex and inferior temporal cortex projected to both CDh and CDt, with more CDt-projecting than CDh-projecting neurons. In superior temporal cortex and dorsal inferior temporal cortex, layers 3 and 5 projected to CDh while layers 3 and 6 projected to CDt. Prefrontal and cingulate cortex projected mostly to CDh bilaterally, less to CDt unilaterally. A cluster of neurons in the basolateral amygdala projected to CDt. Rostral-dorsal claustrum projected to CDh while caudal-ventral claustrum projected to CDt. Within the thalamus, different nuclei projected to either CDh or CDt. The medial centromedian nucleus and lateral parafascicular nucleus projected to CDt while the medial parafascicular nucleus projected to CDh. The inferior pulvinar and lateral dorsal nuclei projected to CDt. The ventral anterior and medial dorsal nuclei projected to CDh. We found little evidence of neurons projecting to both CDh and CDt across the brain. These data suggest that CDh and CDt can control separate functions using anatomically separate circuits. Understanding the roles of these striatal projections will be important for understanding how value memories are created and stored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.