Zinc based or doped ceramics have shown to be capable of increasing osteoblasts proliferation, biomineralization and bone formation. However, studies regarding the biological applications processes in ZnAl 2 O 4 ceramic films are very scarce. For this reason, the objective of this in vitro study was to investigate the response of osteoblasts cells cultured onto ZnAl 2 O 4 films. Our results showed a good biological response related to attachment and viability, with good cell morphology attached to the semi-spherical grains of the ceramic and the analysis of mineral-like tissue showed a high quantity of mineral deposited and organized as tiny spherical-like nodules attached to nanostructure surface of ZnAl 2 O 4 material films. Based in our results, ZnAl 2 O 4 films stimulated the bioactivity of osteoblasts cells and provide a microenvironment that favors cell differentiation and mineralization processes, suggesting their potential use as osteoconductive coating onto currently orthopedic and dental implants.
In this work, it is shown the feasibility for obtaining silver nanoparticles by ultrasonic spray pyrolysis and their simultaneous incorporation during deposition of thin layers of aluminum oxide to get a Cermet coating of Al2O3-Ag. The synthesis of these Cermets was achieved on the basis of both the simultaneous pyrolysis of silver nitrate and aluminum acetylacetonate on different substrates: Quartz, glass, crystalline silicon (c-Si), and titanium at temperatures of 500, 550 and 600• C. The structural properties of the Cermets were studied by ScanningElectron Microscopy, Atomic Force Microscopy and X-ray diffraction. For the optical properties, UV-vis spectroscopy was used to obtain the optical Absorbance of the Cermets, while the Reflectance was obtained by UV-vis-IR spectroscopy measurements. UV-Vis spectroscopy showed that the intensity of the absorption peak (plasmon) was limited to the concentration of silver nitrate, and it shifted toward shorter wavelengths with the decrease in the size of the Ag nanoparticles inside the Cermets. The plasmon position of Ag nanoparticles in the different samples was found to be centered at 504 nm, 506 nm, 497 nm and 475 nm for samples deposited with 0.1 mol, 0.05 mol, 0.02 mol, and 0.01 mol of Ag(NO 3 ), respectively. The shape of the Ag nanoparticles was approximately spherical, ranging from 4 nm to 35 nm, and their concentration was proportional to the concentration of Ag(NO3) included in the spray solution. By means of the UV-Vis Spectroscopy-IR and FT-IR, in the best of cases, a solar absorptance of 0.83 and an infrared thermal emittance of 0.14, for a sample of Al2O3-Ag prepared with 0.1 mol of Ag(NO 3 ) in the precursor solution, were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.