This study aims to evaluate and compare the mechanical and corrosion resistance properties of ultrafine-grained (UFG) copper with that of coarse-grained (CG) copper microstructures. Ultrafinegrained microstructures are produced through severe plastic deformation using rotary swaging. Potentiodynamic polarization and electrochemical impedance tests are performed at 37 C in Hank's solution as the simulated body fluid. The results reveal that the highly deformed UFG-materials not only show marked enhancement of the mechanical properties but also remarkable enhancement of corrosion resistance compared with that of the CG counterpart.
Abstract:There is an increasing demand in the industry for conductive high strength copper alloys. Traditionally, alloy systems capable of precipitation hardening have been the first choice for electromechanical connector materials. Recently, ultrafine-grained materials have gained enormous attention in the materials science community as well as in first industrial applications (see, for instance, proceedings of NANO SPD conferences). In this study the potential of precipitation hardened ultra-fine grained copper alloys is outlined and discussed. For this purpose, swaging or accumulative roll-bonding is applied to typical precipitation hardened high-strength copper alloys such as Corson alloys. A detailed description of the microstructure is given by means of EBSD, Electron Channeling Imaging (ECCI) methods and consequences for mechanical properties (tensile strength as well as fatigue) and electrical conductivity are discussed. Finally the role of precipitates for thermal stability is investigated and promising concepts (e.g. tailoring of stacking fault energy for grain size reduction) and alloy systems for the future are proposed and discussed. The relation between electrical conductivity and strength is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.