Articles you may be interested inInterface trap characterization of atomic layer deposition Al2O3/GaN metal-insulator-semiconductor capacitors using optically and thermally based deep level spectroscopies
We have characterized GaN stripes grown by lateral epitaxial overgrowth on large-area (2 in.) SiO2/GaN/Al2O3 wafers by low-pressure metalorganic chemical vapor deposition before and after coalescence. Using scanning electron microscopy, x-ray diffraction (XRD), transmission electron microscopy (TEM), and atomic force microscope (AFM), it is shown that by first obtaining “wings” (laterally overgrown material) with low tilt relative to the “seed” (underlying) GaN, very few extended defects are formed when wings from neighboring stripes coalesce. After wings with a tilt of ∼0.1° are coalesced and an additional ∼10 μm of GaN is grown, it is found with XRD that peak splitting due to tilt is no longer detectable. TEM and AFM results show that few dislocations (with a linear density <4×103 cm−1) are formed at coalescence fronts.
The carrier capture kinetics of the E c --0.59 eV and E c --0.91 eV electron traps found in molecular beam epitaxy (MBE)-grown n-GaN have been determined by means of deep level transient spectroscopy (DLTS). The 0.59 eV trap does not show the behaviour of either ideal point defects or line defects. In contrast, the 0.91 eV trap displays the kinetics of linearly arranged interacting point defects, which generate a time-dependent local Coulombic potential with a characteristic time constant of % 8:6 ms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.