We present a detailed study of the superconducting properties of the weakly pinned, quasi-two-dimensional superconductor 2H-NbSe2, and its intercalated variant NbSe2{CoCp2}0.26. The intercalation of 2H-NbSe2 with the organometallic donor molecule cobaltocene (CoCp2) hardly affects the superconducting properties within the layers. However, the properties perpendicular to the layers change significantly due to the large expansion of the layer spacings of the host lattice in the c-direction by a factor of about two. In particular, the superconducting anisotropy factor Γ increases from 3.3 in the parent compound 2H-NbSe2 up to 4.4 in the intercalated species. Therefore, NbSe2{CoCp2}0.26 is an excellent candidate to analyze how the anisotropy effects the superconducting mechanism in layered dichalcogenides, and to evaluate the various models proposed in the literature to account for the anisotropy in 2H-NbSe2. While a two-gap model and an anisotropic single-gap model are competing concepts to describe the almost linear T(2)-dependence of ΔC/T in low-dimensional dichalcogenides, our comparative study suggests that a single-gap model with an anisotropic Fermi-surface is sufficient to capture the ΔC/T(T) behavior in our samples qualitatively.
In this article a simple and easy to install low magnetic field extension of the SQUID magnetometer Quantum Design MPMS-7 is described. This has been accomplished by complementing the MPMS-7 magnet control system with a laboratory current supply for the low magnetic field region (B ≤ 200 G). This hard-and software upgrade provides a significant gain in the magnetic field accuracy up to an order of magnitude compared with the standard instrument's setup and is improving the resolution to better than 0.01 G below 40 G. The field control has been integrated into the Quantum Design MultiVu software for a transparent and user-friendly operation of this extension. The improvements achieved are especially useful, when low magnetic field strengths (B < 1 G) are required at high precision. The specific advantages of this application are illustrated by sophisticated magnetic characterisation of lowdimensional superconductors like Sc 3 CoC 4 and SnSe 2 {Co(η-C 5 H 5 ) 2 } x .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.