Thermally-induced isomerization of spiropyran derivatives in aqueous media has been studied. The colorless spirocyclic (SP) forms of spiropyran derivatives are isomerized to colored merocyanine (MC) forms even in dark conditions at elevated temperature. Equilibrium, kinetic, and deuterium experiments reveal that the thermal SP → MC isomerization is due to the stabilization of MC form by a hydrogen bonding interaction with water molecules. This leads to the ground state energy of the MC form decreasing to lower than that of the SP form, resulting in SP → MC isomerization. The thermal isomerization property is applicable to a rough indication of solution temperature. The spiropyran derivatives, when dissolved in aqueous media under irradiation of visible light with an appropriate light intensity, demonstrate an increase in MC absorbance with a rise in temperature. The absorption response occurs reversibly regardless of the heating/cooling sequence. The spiropyran derivatives therefore have a potential for colorimetric temperature indication.
A spiropyran derivative (1) behaves as a selective and sensitive cyanide anion receptor in aqueous media under UV irradiation. The receptor can be reproduced just by irradiation with visible light.
We have developed the first silica-based PLC type 32 x 32 optical matrix switch. The switch is the largest scale waveguide type switch yet reported, which has excellent optical characteristics with an average insertion loss of 6.6 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.