Строится решение задачи Коши для системы двух квазилинейных однородных уравнений в частных производных первого порядка при помощи метода годографа, позволяющего преобразовать решение квазилинейных уравнений в частных производных первого порядка к решению некоторого линейного дифференциального уравнения в частных производных второго порядка с~переменными коэффициентами. Показано, что различные варианты метода годографа - стандартного, на основе закона сохранения и обобщенного метода годографа, позволяющие строить решение задачи Коши в неявной форме, в конечном итоге, приводят к одному и тому же результату и отличаются лишь объемом технической работы. Доказательство осуществляется путем вычисления инвариантов Лапласа для канонической формы линейного дифференциального уравнения в частных производных второго порядка. В случае, когда уравнения допускают явную связь исходных переменных с инвариантами Римана и соответствующее линейное уравнение метода годографа позволяет указать явную форму функции Римана - Грина, описан способ построения явного решения на линиях уровня неявного решения. Задача Коши для системы двух квазилинейных уравнений в частных производных первого порядка сводится к задаче Коши для некоторой системы обыкновенных дифференциальных уравнений. В качестве примера приведено точное неявное решение для системы слабо-нелинейных уравнений. Все рассмотренные методы и способ построения явного решения можно применять для уравнений гиперболического и эллиптического типов. В случае гиперболических уравнений возможно построение автомодельных и разрывных решений (после добавления условий на разрывах), а также решений многозначных по пространственной координате (если такие решения допускаются постановкой задачи). Несмотря на то, что на заключительном этапе метода задачу Коши для обыкновенных дифференциальных уравнений приходится решать численно, никаких аппроксимаций уравнений в частных производных, типичных для конечно-разностного метода, метода конечных элементов, метода конечных объемов и т. п. не используется. Метод является точным в том смысле, что погрешность вычислений связана лишь с точностью интегрирования обыкновенных дифференциальных уравнений.
Для вращательно симметричного безвихревого течения вязкой несжимаемой жидкости в трубе с податливыми стенками (compliant tube) на основе теории мелкой воды (лагранжев подход) построено нелинейное амплитудное уравнение, описывающее поведение конечных возмущений в окрестности волн, распространяющихся вдоль характеристик. Считается, что течение происходит в бесконечной цилиндрической области, имеющей свободную поверхность, на которой выполнены кинематическое и динамические условия с учетом поверхностного натяжения. Характерный размер цилиндрической области в~осевом направлении считается много б'ольшим, чем характерный размер в радиальном направлении. Обнаружено, что в случае рассматриваемого безвихревого течения (уравнения Навье~--- Стокса), уравнения течения не содержат членов, учитывающих вязкость (совпадают с уравнениями идеальной несжимаемой жидкости - уравнениями Эйлера). Влияние вязкости жидкости учитывается лишь за счет динамического краевого условия на границе. Амплитудное уравнение имеет вид уравнения Кортевега-де Вриза - Бюргерса, решение которого достаточно хорошо изучено аналитическими, асимптотическими и численными методами. Вычислены коэффициенты уравнения и, в~зависимости от их значений, проведен качественный анализ поведения возмущений. Построенное амплитудное уравнение и возникающие в процессе построения, как главный член асимптотики, квазилинейные гиперболические уравнения, а также уравнения для конечных возмущений, можно использовать для описания течения струи жидкости и/или течения крови в аорте. В принципе, и квазилинейные уравнения, и амплитудное уравнение, и уравнения для конечных возмущений, полученные, как правило, при помощи метода осреднения, известны и широко используются, в частности, для моделирования течения крови. Однако, при конструировании известных моделей при помощи метода осреднения используется большое количество эвристических предположений, зачастую слабо обоснованных. Предлагаемый в представленной работе способ построения моделей математически более корректен и не содержит никаких предположений, кроме сформулированного при постановке задачи требования о безвихревом характере течения и порядке малости параметров (вязкости, поверхностного натяжения). Кроме этого, дано сравнение полученных уравнений с уравнениями метода осреднения и вычислен поправочный коэффициент. С~математической точки зрения, построенные модели течений представляют собой уравнения для определения главного и последующего членов асимптотики.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.