Fourteen Angora does (35+/-2 kg), each with a single kid and in the first month of lactation, were used to determine ongoing (Period 1) and residual (Period 2) effects of chronic bovine somatotropin (bST) treatment. Specifically, we sought to determine whether chronic bST treatment was capable of improving milk yield, and thus kid growth, and mohair production of nursing does. The experiment consisted of a 2-wk pretreatment period, 5 wk of weekly subcutaneous treatment of slow-release bST (n = 7; Period 1), and a 4-wk posttreatment period (Period 2). The weekly dose of bST was calculated to release 100 microg/(kg BW.d(-1)). To estimate milk production, kids were separated from the does daily for 5 h, and their BW was recorded before and after suckling. The difference in BW was taken as milk production for 5 h. Fiber growth was measured by shearing does at the start of the experiment and at the end of Periods 1 and 2. Dry matter intake and BW of does were not affected by bST (P>.05). Average daily gain of kids that were suckling bST-treated does was higher (P<.05) than for kids of untreated does during Period 1 (184 vs. 139 g/d) but not during Period 2 (140 vs. 136 g/d; P>.10). Treatment with bST did not affect (P>.10) milk composition or clean fleece production in either period. Injection of bST did not affect (P>.10) plasma concentrations of glucose (mean = 49.5 mg/dL), urea N (mean = 19 mg/dL), total protein (mean = 72.5 g/d), or NEFA (mean = 122 microEq/L). During the period of bST treatment, plasma concentrations of somatotropin and IGF-I were increased (P<.05), concentrations of thyroxine and cortisol were decreased (P<.10), and plasma insulin levels were unchanged (P>.10) by bST. In conclusion, treatment of Angora dams with bST did not change DMI or mohair growth, but it improved growth of their kids.
Angora goat, Spanish goat, and Suffolk x Rambouillet sheep wethers (20 of each type; 30.4+/-.57, 31.3+/-.93, and 32.4+/-1.08 kg BW for Angora goats, Spanish goats, and sheep, respectively) were used to investigate influences of animal type and two grass-based pasture treatments on heat energy during summer grazing (mid-August through September in Oklahoma). The improved pasture treatment consisted of .7-ha paddocks primarily of Old World bluestem and johnsongrass, whereas the native pasture treatment entailed 10.8-ha paddocks dominated by big and little bluestems and indiangrass. Grasses were 95 to 100% of diets for the improved pasture treatment and 71 to 95% for the native pasture treatment; forbs were 2 to 25%, and shrubs were less than 4% of diets for the native pasture treatment. Metabolizable energy intake was similar (P > . 10) between pasture treatments but differed (P <.01) among animal types: 79, 99, and 113 kcal/(kg(.75) BW.d) for Angora goats, Spanish goats, and sheep, respectively; SE 7.1. Heat energy estimated via CO2 entry rate was affected by pasture treatment ( P = .08) and animal type (P < .001): improved pasture treatment 109, 132, and 151 kcal/(kg(.75) BW.d); native pasture treatment 126, 138, and 163 kcal/(kg(.75) BW.d) for Angora goats, Spanish goats, and sheep, respectively. Likewise, daylight grazing time was greater (P = .04) for the native than for the improved pasture treatment and differed (P < .01) among animal types: improved pasture treatment 5.3, 4.7, and 6.7 h; native pasture treatment 6.0, 5.7, and 8.1 h for Angora goats, Spanish goats, and sheep, respectively. In conclusion, heat energy during summer grazing of grass-based paddocks was less for goats than for sheep, and animal type can affect the increase in heat energy as energy intake and grazing time increase.
The production performance of ewes was assessed in a terminal crossbreeding experiment involving five Merino and Merino-type dam lines and two terminal crossbreeding sire breeds. Dam lines were SA Mutton Merino (SAMM), SAMM rams crossed to Merino ewes (SAMM cross), Dohne Merino, as well as specialist Merino lines selected for clean fleece weight (FW+) and for an increased reproduction (Rep+). Dormer and Suffolk rams were used as sires. Dual-purpose ewes were heavier than Merinos on average and at the ultimate joining at 3.5 years. Average clean fleece weight for SAMM ewes was approximately half that of Merino ewes while clean fleece weights for Dohne and SAMM cross ewes were intermediate. Differences between progeny in slaughter age, marketing weight, dressing percentage and carcass weight could largely be attributed to the comparison of purebred Merino lines with dual-purpose lines. The slaughter age of lambs from the two Merino lines was between 14 and 21% higher than that of the dualpurpose lines. Lambs from purebred SA Mutton Merino (SAMM) dams also outperformed lambs from SAMM cross ewes for slaughter age, slaughter weight and carcass weight. Considerable variation was found between dam lines for reproduction parameters, but few significant differences were found. Lamb output, defined as total weight of lamb slaughtered per joining, averaged 42.7 kg for SAMM ewes, 44.2 kg for SAMM cross ewes, 39.3 kg for Dohne ewes, 32.9 kg for FW+ Merino ewes and 42.0 kg for Rep+ Merino ewes, but differences between lines only tended to be significant. Sire breed did not affect lamb performance or ewe productivity markedly. An economic simulation indicated large differences in gross income per small stock unit between dam lines, warranting further research on the efficiency of terminal Merino-type dam lines. ________________________________________________________________________________________________
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.