Two-phase flow exists in many industrial components. To avoid costly vibration problems, sound technology in the area of two-phase flow-induced vibration is required. This paper is an overview of the principal mechanisms governing vibration in two-phase flow. Dynamic parameters such as hydrodynamic mass and damping are discussed. Vibration excitation mechanisms in axial flow are outlined. These include fluidelastic instability, phase-change noise, and random excitation. Vibration excitation mechanisms in cross-flow, such as fluidelastic instability, periodic wake shedding, and random excitation, are reviewed.
This paper provides a brief overview of progress in our understanding of flow-induced vibration in power and process plant components. The flow excitation mechanisms considered are turbulence, vorticity shedding, fluidelastic instability, axial flows, and two-phase flows. Numerous references are provided along with suggestions for future research on unresolved issues. [S0094-9930(00)01203-8]
Fluidelastic instability is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to cross-flow. Most of the available data on this topic have been reviewed from the perspective of the designer. Uniform definitions of critical flow velocity for instability, damping, natural frequency and hydrodynamic mass were used. Nearly 300 data points were assembled. We found that only data from experiments where all tubes are free to vibrate are valid from a design point of view. In liquids, fluid damping is important and should be considered in the formulation of fluidelastic instability. From a practical design point of view, we conclude that fluidelastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping. There is no advantage in considering more sophisticated models at this time. Practical design guidelines are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.