This work describes the development of a state-of-the-art muon spectrometer for the ISIS pulsed muon source. Conceived as a major upgrade of the highly successful EMU instrument, emphasis has been placed on making effective use of the enhanced flux now available at the ISIS source. This has been achieved both through the development of a highly segmented detector array and enhanced data acquisition electronics. The pulsed nature of the ISIS beam is particularly suited to the development of novel experiments involving external stimuli, and therefore the ability to sequence external equipment has been added to the acquisition system. Finally, the opportunity has also been taken to improve both the magnetic field and temperature range provided by the spectrometer, to better equip the instrument for running the future ISIS user programme.
A signal processing hardware platform has been developed for the Low Frequency Aperture Array component of the Square Kilometre Array (SKA). The processing board, called an Analog Digital Unit (ADU), is able to acquire and digitize broadband (up to 500[Formula: see text]MHz bandwidth) radio-frequency streams from 16 dual polarized antennas, channel the data streams and then combine them flexibly as part of a larger beamforming system. It is envisaged that there will be more than 8000 of these signal processing platforms in the first phase of the SKA, so particular attention has been devoted to ensure the design is low-cost and low-power. This paper describes the main features of the data acquisition unit of such a platform and presents preliminary results characterizing its performance.
The signal processing firmware that has been developed for the Low Frequency Aperture Array component of the Square Kilometre Array (SKA) is described. The firmware is implemented on a dual FPGA board, that is capable of processing the streams from 16 dual polarization antennas. Data processing includes channelization of the sampled data for each antenna, correction for instrumental response and for geometric delays and formation of one or more beams by combining the aligned streams. The channelizer uses an oversampling polyphase filterbank architecture, allowing a frequency continuous processing of the input signal without discontinuities between spectral channels. Each board processes the streams from 16 antennas, as part of larger beamforming system, linked by standard Ethernet interconnections. These are envisaged to be 8192 of these signal processing platforms in the first phase of the SKA so particular attention has been devoted to ensure the design is low cost and low power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.