This paper presents a data-driven approach for the online updating of the flight envelope of an unmanned aerial vehicle subjected to structural degradation. The main contribution of the work is a general methodology that leverages both physics-based modeling and data to decompose tasks into two phases: expensive offline simulations to build an efficient characterization of the problem and rapid data-driven classification to support online decision making. In the approach, physics-based models at the wing and vehicle level run offline to generate libraries of information covering a range of damage scenarios. These libraries are queried online to estimate vehicle capability states. The state estimation and associated quantification of uncertainty are achieved by Bayesian classification using sensed strain data. The methodology is demonstrated on a conceptual unmanned aerial vehicle executing a pullup maneuver, in which the vehicle flight envelope is updated dynamically with onboard sensor information. During vehicle operation, the maximum maneuvering load factor is estimated using structural strain sensor measurements combined with physics-based information from precomputed damage scenarios that consider structural weakness. Compared to a baseline case that uses a static as-designed flight envelope, the self-aware vehicle achieves both an increase in probability of executing a successful maneuver and an increase in overall usage of the vehicle capability. = number of observable vector data samples N s = number of sensors n = load factor n max = maximum load factor before failure n truth max = truth reference maximum load factor n op = operational load factor decided upon using dynamic capability estimate n static op = operational load factor decided upon using static capability estimate from design n util = average utilization of maximum vehicle capability p· = probability p op = threshold probability for decisions using dynamic capability estimate R = number of damage library records S = support vector machine discriminant function ("score") S = observable vector space s = observable vector s = observable vector measurement V = airspeed w c = chordwise extent of damage on wing w s = spanwise extent of damage on wing X = vehicle state space x = vehicle state α j = support vector machine weight for jth training sample β 1 , β 2 = probabilistic support vector machine regression model parameters ϵ k = kth strain gage rosette output ε k = plane strain at location of kth strain gage rosette
In this paper we develop initial offline and online capabilities for a self-aware aerospace vehicle. Such a vehicle can dynamically adapt the way it performs missions by gathering information about itself and its surroundings via sensors and responding intelligently. The key challenge to enabling such a self-aware aerospace vehicle is to achieve tasks of dynamically and autonomously sensing, planning, and acting in real time. Our first steps towards achieving this goal are presented here, where we consider the execution of online mapping strategies from sensed data to expected vehicle capability while accounting for uncertainty. Libraries of strain, capability, and maneuever loading are generated offline using vehicle and mission modeling capabilities we have developed in this work. These libraries are used dynamically online as part of a Bayesian classification process for estimating the capability state of the vehicle. Failure probabilities are then computed online for specific maneuvers. We demonstrate our models and methodology on decisions surrounding a standard rate turn maneuver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.