The pharmacokinetics of diphenhydramine (DPHM) was compared in camels (n = 8) and horses (n = 6) following intravenous (i.v.) administration of a dose of 0.625 mg/kg body weight. In addition, the metabolism and urinary detection time of DPHM was evaluated in camels. The data obtained (median and range in brackets) in camels and horses, respectively, were as follows. The terminal elimination half lives (h) were 1.58 (1.13-2.58) and 6.11 (4.80-14.1), and the total body clearances (L/h per kg) were 1.42 (1.13-1.74) and 0.79 (0.66-0.90). The volumes of distribution at steady state (L/kg) were 2.38 (1.58-4.43) and 5.98 (4.60-8.31) and the volumes of the central compartment of the two compartment pharmacokinetic model were 1.58 (0.80-2.54) and 2.48 (1.79-3.17). All the pharmacokinetic parameters in camels were significantly different from those of horses. Five metabolites of DPHM were tentatively identified in the camel's urine. Two metabolites, diphenylmethoxyacetic acid and 1-(4-hydroxyphenyl)-phenylmethoxyacetic acid, were present in the acid fraction. Two metabolites, desamino-DPHM and diphenylmethanol, were identified in the basic fraction, in addition to DPHM itself, which was present mainly as a conjugate. Even after enzymatic hydrolysis, DPHM could be detected for up to 24 h in camels after an i.v. dose of 0.625 mg/kg body weight.
One of the most potent carcinogens is 7,12-dimethylbenz(a)anthracene (7,12-DMBA), which is used routinely to conduct studies to evaluate carcinogen inhibitors. Its pharmacokinetics have not been reported in the literature. In view of its significant effects on drug metabolizing enzymes and clearance mechanisms, it is important to know its disposition characteristics. In this study, we monitored the disposition characteristics of 7,12-DMBA in rats as a function of dose range commonly used in carcinogenesis studies. A mean residence time of 40-55 min was observed; the total body clearance ranged from 8-13 l kg-1. No effect of dose was observed on the pharmacokinetic parameters. This suggests that the dose-dependent effects of 7,12-DMBA carcinogenesis are related to its transient disposition characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.