The classical bulk model for isolated jets and plumes due to Morton, Taylor & Turner (Proc. R. Soc. Lond. A, vol. 234, 1956, p. 1) is generalized to allow for time-dependence in the various fluxes driving the flow. This new system models the spatio-temporal evolution of jets in a homogeneous ambient fluid and Boussinesq and non-Boussinesq plumes in stratified and unstratified ambient fluids.Separable time-dependent similarity solutions for plumes and jets are found in an unstratified ambient fluid, and proved to be linearly stable to perturbations propagating at the velocity of the ascending plume fluid. These similarity solutions are characterized by having time-independent plume or jet radii, with appreciably smaller spreading angles ($\tan^{-1}(2\alpha/3)$) than either constant-source-buoyancy-flux pure plumes (with spreading angle $\tan^{-1}(6\alpha/5)$) or constant-source-momentum-flux pure jets (with spreading angle $\tan^{-1}(2\alpha)$), where $\alpha$ is the conventional entrainment coefficient. These new similarity solutions are closely related to the similarity solutions identified by Batchelor (Q. J. R. Met. Soc., vol. 80, 1954, p. 339) in a statically unstable ambient, in particular those associated with a linear increase in ambient density with height.If the source buoyancy flux (for a rising plume) or source momentum flux (for a rising jet) is decreased generically from an initial to a final value, numerical solutions of the governing equations exhibit three qualitatively different regions of behaviour. The upper region, furthest from the source, remains largely unaffected by the change in buoyancy flux or momentum flux at the source. The lower region, closest to the source, is an effectively steady plume or jet based on the final (lower) buoyancy flux or momentum flux. The transitional region, in which the plume or jet adjusts between the states in the lower and upper regions, appears to converge very closely to the newly identified stable similarity solutions. Significantly, the predicted narrowing of the plume or jet is observed. The size of the narrowing region can be determined from the source conditions of the plume or jet. Minimum narrowing widths are considered with a view to predicting pinch-off into rising thermals or puffs.
Four existing integral models of unsteady turbulent plumes are revisited. We demonstrate that none of these published models is ideal for general descriptions of unsteady behaviour and put forward a modified model. We show that the most recent (top-hat) plume model (Scase et al. J. Fluid Mech., vol. 563, 2006, p. 443), and the earlier (Gaussian) plume models (Delichatsios J. Fluid Mech., vol. 93, 1979, p. 241; Yu Trans. ASME, vol. 112, 1990, p.186), are all ill-posed. This ill-posedness arises from the downstream growth of short-scale waves, which have an unbounded downstream growth rate. We show that both the top-hat and the Gaussian (Yu) models can be regularized, rendering them well-posed, by the inclusion of a velocity diffusion term. The effect of including this diffusive mechanism is to include a vertical structure in the model that can be interpreted as representing the vertical extent of an eddy. The effects of this additional mechanism are small for steady applications, and cases where the plume forcing can be considered to follow a power law (both of which have been studied extensively). However, the inclusion of diffusion is shown to be crucial to the general initial-value problem for unsteady models.
It is well-established that the Coriolis force that acts on fluid in a rotating system can act to stabilise otherwise unstable flows. Chandrasekhar considered theoretically the effect of the Coriolis force on the Rayleigh-Taylor instability, which occurs at the interface between a dense fluid lying on top of a lighter fluid under gravity, concluding that rotation alone could not stabilise this system indefinitely. Recent numerical work suggests that rotation may, nevertheless, slow the growth of the instability. Experimental verification of these results using standard techniques is problematic, owing to the practical difficulty in establishing the initial conditions. Here, we present a new experimental technique for studying the Rayleigh-Taylor instability under rotation that side-steps the problems encountered with standard techniques by using a strong magnetic field to destabilize an otherwise stable system. We find that rotation about an axis normal to the interface acts to retard the growth rate of the instability and stabilise long wavelength modes; the scale of the observed structures decreases with increasing rotation rate, asymptoting to a minimum wavelength controlled by viscosity. We present a critical rotation rate, dependent on Atwood number and the aspect ratio of the system, for stabilising the most unstable mode.
We model the behaviour of isolated sources of finite radius and volume flux which experience a sudden drop in buoyancy flux, generalizing the previous theory presented in Scase et al. (J. Fluid Mech., vol. 563, 2006, p. 443). In particular, we consider the problem of the source of an established plume suddenly increasing in area to provide a much wider plume source. Our calculations predict that, while our model remains applicable, the plume never fully pinches off into individual rising thermals.We report the results of a large number of experiments, which provide an ensemble to compare to theoretical predictions. We find that provided the source conditions are weakened in such a way that the well-known entrainment assumption remains valid, the established plume is not observed to pinch off into individual thermals. Further, not only is pinch-off not observed in the ensemble of experiments, it cannot be observed in any of the individual experiments. We consider both the temporal evolution of the plume profile and a concentration of passive tracer, and show that our model predictions compare well with our experimental observations.
Building upon the recent experimentally verified modelling of turbulent plumes which are subject to decreases in their source strength (Scase et al., J. Fluid Mech., vol. 563, 2006b, p. 443), we consider the complementary case where the plume's source strength is increased. We consider the effect of increasing the source strength of an established plume and we also compare time-dependent plume model predictions for the behaviour of a starting plume to those of Turner (J. Fluid Mech., vol. 13, 1962, p. 356).Unlike the decreasing source strength problems considered previously, the relevant solution to the time-dependent plume equations is not a simple similarity solution. However, scaling laws are demonstrated which are shown to be applicable across a large number of orders of magnitude of source strength increase. It is shown that an established plume that is subjected to an increase in its source strength supports a self-similar 'pulse' structure propagating upwards. For a point source plume, in pure plume balance, subjected to an increase in the source buoyancy flux F 0 , the rise height of this pulse in terms of time t scales as t 3/4 while the vertical extent of the pulse scales as t 1/4 . The volume of the pulse is shown to scale as t 9/4 . For plumes in pure plume balance that emanate from a distributed source it is shown that the same scaling laws apply far from the source, demonstrating an analogous convergence to pure plume balance as that which is well known in steady plumes. These scaling law predictions are compared to implicit large eddy simulations of the buoyancy increase problem and are shown to be in good agreement.We also compare the predictions of the time-dependent model to a starting plume in the limit where the source buoyancy flux is discontinuously increased from zero. The conventional model for a starting plume is well approximated by a rising turbulent, entraining, buoyant vortex ring which is fed from below by a 'steady' plume. However, the time-dependent plume equations have been defined for top-hat profiles assuming only horizontal entrainment. Therefore, this system cannot model either the internal dynamics of the starting plume's head or the extra entrainment of ambient fluid into the head due to the turbulent boundary of the vortex ring-like cap. We show that the lack of entrainment of ambient fluid through the head of the starting plume means that the time-dependent plume equations overestimate the rise height of a starting † Email address for correspondence: matthew.scase@nottingham.ac.uk 138 M. M. Scase, A. J. Aspden and C. P. Caulfield plume with time. However, by modifying the entrainment coefficient appropriately, we see that realistic predictions consistent with experiment can be attained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.