The design of a Phase-Locked Loop (PLL) to generate the clock reference for the new Spacefibre standard is presented in this paper. Spacefibre has been recently released by the European Space Agency (ESA) and supports up to 6.25 Gbps for on-board satellite communications. Taking as a starting point a rad-hard 6.25 GHz Voltage Controlled Oscillator in 65 nm technology, this work presents the design of the key blocks for an integrated PLL: a Triple Modular Redundancy Phase/Frequency Detector, a Charge Pump, and a passive Loop Filter. The modeling activities carried out in an Advanced Design System have proven that the proposed PLL can be completely integrated on-chip, with a Loop Filter area consumption of only 6000 µm2 (considering the 65 nm technology). The design of active circuits has been carried out at the transistor level in a Cadence Virtuoso environment, implementing both system and layout rad-hard techniques, and different solutions are discussed in this paper. As a result, a compact (0.09 mm2), low power (10.24 mW), dead zone free and rad-hard PLL is obtained with a Phase Noise below −80 dBc/Hz @ 1 MHz. A preliminary block view and floor plan of the test chip is also proposed.
The current trend of increasing the complexity of hardware accelerators to improve their functionality is highlighting the problem of sharing a high-frequency clock signal for all integrated modules. As the clock itself is becoming the main limitation to the performance of accelerators, in this manuscript, we present the design of an asymmetric Ring Oscillator-Voltage-Controlled Oscillator (RO-VCO) based on the Current Mode Logic architecture. The RO-VCO was designed on commercial-grade 65 nm CMOS technology, and it is capable of driving large capacitance loads, avoiding the need for additional buffers for clock-trees, reducing the silicon area and power consumption. The proposed RO-VCO is composed of three closed-loop differential and asymmetrical stages, and it is able to tune the working frequency in the range from 4.72 GHz to 6.12 GHz. The phase noise and a figure of merit of −103.2 dBc/Hz and −186 dBc/Hz were obtained at 1 MHz offset from the 5.5 GHz carrier. In this article, the analytical model, full custom schematic, and layout of the proposed RO-VCO are presented and discussed in detail together with the experimental electrical and thermal characterization of the fabricated device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.