Photoconductive detectors based on partially ordered AlxGa1−xN alloys with AlN mole fractions up to 45% were fabricated and evaluated. The degree of ordering in these alloys was found to increase with the AlN mole fraction and it has a maximum value at about 50%. The resistivity of the AlxGa1−xN films was found to increase from 10 to 108 Ω cm by increasing the Al content in the films. Correspondingly, the mobility-lifetime (μτ) product, which was determined by measuring the photoconductive gain, was found to decrease from 10−2 to 10−5 cm2/V. These high values of the μτ product at the high AlN mole fraction are attributed to spatial separation and indirect recombination of the photogenerated electron hole pairs, due to band-gap misalignment of the ordered and disordered domains in these films.
In this letter, the lateral and vertical transport in lightly doped n−-GaN films, grown by plasma assisted molecular beam epitaxy, were investigated in order to explore the role of electron scattering by charged dislocations. Lateral transport constants were determined by Hall effect measurements on n−-GaN films. The doping concentration and mobility of the investigated films was 1–2×1017 cm−3 and 150–200 cm2/V s, respectively. Vertical transport was studied by etching mesa structures and forming Schottky barrier diodes. The diodes exhibit near ideal forward current–voltage characteristics with reverse saturation current densities in the 1–10×10−9 A cm−2 range. The doping concentrations as well as the barrier height of the diodes were determined from capacitance–voltage measurements to be 8–9×1016 cm−3 and 0.95–1.0 V, respectively. The analysis of the reverse saturation current, using the diffusion theory, leads to vertical mobility values of 950 cm2/V s. The significant increase in mobility for vertical transport is attributed to reduction in scattering by charged dislocations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.