This study utilizes the generalized gradient approximation (GGA) and GGA+U methods within the first-principles density functional theory to investigate the electronic and magnetic structures of Ir5+-based double perovskites Ba2TIrO6 (T = Cr, Mn, and Fe). Also, we include the spin–orbit (SO) interaction to incorporate the scalar relativistic effect in calculations. The structural optimizations and stability revealed that Ba2TIrO6 exhibits a cubic structure (space group Fm-3m). GGA+U and GGA+SO+U yield quite accurate results of the bandgaps and conduction states as compared to GGA and GGA+SO methods. The total and partial densities of states (DOSs) predict that Ba2TIrO6 shows two behaviors: half-metallic (T = Cr) and metallic (T = Mn and Fe), wholly transforming to the half-metallicity nature when SO and U are jointly turned on within the GGA+SO+U method. Moreover, the results of magnetic structures expose the existence of ferromagnetic (T = Cr and Fe) and antiferromagnetic (T = Mn) orderings in Ba2TIrO6 via 180°-superexchange T3+–O2−–Ir5+. Analysis of the DOSs and magnetic moments shows that the inclusion of the SO interaction has an insignificant effect on Ir-5d4 electrons in all compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.