Воронежский государственный университет инженерных технологий, пр-т Революции, 19, г. Воронеж, 394036, Россия Реферат. В статье рассматривается задача построения агрегированных рейтингов журналов по пищевой промышленности. В качестве исходных данных использовались упорядочения семнадцати журналов по четырем библиометрическим показателям (SCIENCEINDEX, пятилетний импакт-фактор РИНЦ с учетом переводной версии без самоцитирования, индекс Хирша за 10 лет и индекс Херфиндаля), которые используются в научной электронной библиотеке elibrary.ru.Рассматриваемая постановка задачи относится к многокритериальным задачам принятия решений. Так как библиометрические показатели учитывают различные аспекты журналов, то упорядочения (ранжирования) журналов по этим показателям отличаются друг от друга.Классическим подходомк решениюзадач подобного типа является подход, основанный на построении тем или иным способом обобщенного критерия в виде аддитивной свертки. Однако применение данного подхода требует соблюдение ряда регулярных условий, которые не всегда могут выполняться при решении практических задач. Показана возможность сведения рассматриваемой постановки в виде многокритериальной задачи принятия решений к задаче коллективного выбора. Агрегированные рейтинги рассматриваемых журналов рассчитывались с помощью трех правил правил коллективного выбора-процедуры Борда, процедуры Коупленда и эвристической процедуры построения медианы Кемени. На основе коэффициента ранговой корреляции Спирмена определены количественные оценки степени близости построенных в работе ранжирований журналов. В частности, рассчитанные на основе процедуры Борда и на основе медианы Кемени агрегированные рейтинги рассматриваемых в работе журналов полностью совпали. Полученные результаты показали, что построенные агрегированные упорядочения журналов на основе правил коллективного выбора хорошо согласуются с используемыми в научной электронной библиотеке eLIBRARY библиометрическими показателями. Ключевые слова: правило коллективного выбора, степень близости ранжирований, ранговая корреляция
The article deals with the issues of national aggregated ranking (NAR) of higher education institutions. This case is formulated as a collective choice problem. It is proposed to use voting procedures in small groups that meet the Condorcet principle as aggregation method. The paper applies collective choice rules to the problem under consideration. The alternatives final ordering stability obtained from the Board, Copeland, and Kemeny procedures is illustrated by specific examples. The empirical average was considered as Kemeny median approximate estimate. The example showed Board procedure instability to a slight change in the initial ratings obtained in the rating mechanisms under consideration. Using the voting procedures results described in the paper in small groups on a limited sample containing data from fifteen elements group are presented. The constructed three aggregated rankings proximity degree was estimated using two metricsthe Kendall rank correlation coefficient and the Kemeny distance. Based on a comparative results analysis, it can be concluded that it is appropriate to use collective selection procedures that are well-off in Condorcet when constructing aggregated rating of various organizations, including educational institutions.
The analysis of large-scale business projects is non-dominant alternatives. However, the options under consideration may be too large, and the decision-maker may not be able to apply any mechanism for selecting the best option to this set. Most of the existing decision support procedures involve the entire available alternatives set in the comparison and evaluation process, so they are not suitable in this situation. The paper suggests an effective way to solve this problemthe expert assessments extrapolation method to develop an objective collective solution based on alternatives small training sample expert analysis. In the proposed method version, it is assumed that for any alternatives pair, experts are able to estimate the difference value in their utility. Thus, a difference-classification scale is introduced for alternatives, which makes it possible to more accurately assess the comparative alternatives value and make a more reasonable choice than when using an ordinal scale. This approach advantage also consists in the absence of any some alternatives superiority degrees priori numerical estimates over others, since any such assessment contains certain arbitrariness. The collective choice is based on obtaining generalized criterion parameters estimates using the maximum likelihood principle. In this case, calculating the likelihood function for m-alternatives sample requires determining the multiplicity m-1 of several integrals numerical values over complex geometry region. It is proposed for its calculation to use the Monte-Carlo method. To increase the stability to the maximizing the likelihood function method integration error, we propose numerically-analytical method for calculating target function first and second orders partial derivatives. Simple and visible examples demonstrate the proposed approach effectiveness.
Кафедры: информационных и управляющих систем (1); выс шей математики и информационных технологий (2), ФГБОУ ВО «Воронежский государственный университет инженерных технологий», г. Воронеж, Россия; max1m@mail.ru Ключевые слова: вероятность передачи данных; дискретный регулятор; контроллер; сетевая система управления; сетевой канал; система управления; такт квантования. Аннотация: Проведено имитационное моделирование системы управления
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.