The existing theories which aim to explain the extraordinary optical transmission of a metallic film pierced by a two-dimensional subwavelength hole array ͓T.
We establish the most general differential equations that are satisfied by the Fourier components of the electromagnetic field diffracted by an arbitrary periodic anisotropic medium. The equations are derived by use of the recently published fast-Fourier-factorization (FFF) method, which ensures fast convergence of the Fourier series of the field. The diffraction by classic isotropic gratings arises as a particular case of the derived equations; the case of anisotropic classic gratings was published elsewhere. The equations can be resolved either through classic differential theory or through the modal method for particular groove profiles. The new equations improve both methods in the same way. Crossed gratings, among which are grids and two-dimensional arbitrarily shaped periodic surfaces, appear as particular cases of the theory, as do three-dimensional photonic crystals. The method can be extended to nonperiodic media through the use of a Fourier transform.
Using theorems of Fourier factorization, a recent paper [J. Opt. Soc. Am. A 13, 1870 (1996)] has shown that the truncated Fourier series of products of discontinuous functions that were used in the differential theory of gratings during the past 30 years are not converging everywhere in TM polarization. They turn out to be converging everywhere only at the limit of infinitely low modulated gratings. We derive new truncated equations and implement them numerically. The computed efficiencies turn out to converge about as fast as in the TE-polarization case with respect to the number of Fourier harmonics used to represent the field. The fast convergence is observed on both metallic and dielectric gratings with sinusoidal, triangular, and lamellar profiles as well as with cylindrical and rectangular rods, and examples are shown on gratings with 100% modulation. The new formulation opens a new wide range of applications of the method, concerning not only gratings used in TM polarization but also conical diffraction, crossed gratings, three-dimensional problems, nonperiodic objects, rough surfaces, photonic band gaps, nonlinear optics, etc. The formulation also concerns the TE polarization case for a grating ruled on a magnetic material as well as gratings ruled on anisotropic materials. The method developed is applicable to any theory that requires the Fourier analysis of continuous products of discontinuous periodic functions; we propose to call it the fast Fourier factorization method.
Using a rigorous electromagnetic analysis of two-dimensional (or crossed) gratings, we account, in a first step, for the enhanced transmission of a sub-wavelength hole array pierced inside a metallic film, when plasmons are simultaneously excited at both interfaces of the film. Replacing the hole array by a continuous metallic film, we then show that resonant extraordinary transmission can still occur, provided the film is modulated. The modulation may be produced in both a one-dimensional and a two dimensional geometry either by periodic surface deformation or by adding an array of high index pillars. Transmittivity higher than 80% is found when surface plasmons are excited at both interfaces, in a symmetric configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.