PEB-me is a predominant protein of mature Drosophila melanogaster ejaculatory bulbs. It is resolved into four or five closely spaced subfractions (apparent molecular weight 35-39 kD) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Four electrophoretic variants of PEB-me differing in apparent molecular weight by 200-800 daltons were found. These appear to be controlled by four alleles of a gene (peb) located by recombination and deletion mapping to the 60F1-2 region of chromosome 2. A minor ejaculatory bulb protein of ca. 80 kD (hPEB) was found to be immunochemically related to PEB and possibly encoded by peb. PEB is not detected by immunoblotting techniques in virgin females, in male tissues other than the ejaculatory bulb, or during developmental stages preceding the formation of this organ. The results of transplantations of genital imaginal discs and of immature ejaculatory bulbs between two strains having different PEB alleles suggest that the ejaculatory bulb is the site of PEB synthesis. In flies mutant for tra, tra-2, dsx, or ix, tissue specificity of PEB localization is retained and the protein is found whenever the ejaculatory bulb is formed, regardless of the chromosomal sex of the fly. The protein is transferred into the female genital duct during mating, where it can be detected for up to 12 hr. Possible functions of PEB in Drosophila reproduction are discussed.
BACKGROUND: Stromal cells are a functionally important component of human carcinomas. The aim of this study was to obtain and characterise primary cultures of stromal cells from human carcinomas and the corresponding surrounding normal tissue. METHODS: Primary stromal cell cultures from tumours of lung, oesophagus and pancreas were obtained using a mild tissue dissociation method and a medium for culturing mesenchymal cells. Immunofluorescence staining and western blotting were used to analyse the expression of differentiation markers and selected known oncoproteins in the cell cultures obtained. RESULTS: A panel of stromal primary cultures was prepared from different human tumours and from matched normal cancer-free tissues. The in vitro proliferative potential of tumour-associated fibroblasts was shown to be higher than that of matched normal stromal cells. A mutational analysis of the TP53 and KRAS2 genes in a number of stromal cultures did not reveal known mutations in most cells of the cultures studied. Western blot analysis showed that stromal cells of lung tumours were characterised by a statistically significantly lower expression level of the p16 protein as compared with that in normal lung stromal cells. An important finding of our study was that, according to immunofluorescence assay, a fraction of fibroblast-like vimentin-positive cells in some tumour and normal stromal cell cultures expressed an epithelial marker -cytokeratins. CONCLUSION: Proliferating stromal cells from the carcinomas studied proved to be genetically normal cells with altered expression profiles of some genes involved in carcinogenesis, as compared with normal stromal cells. Epithelial-mesenchymal transition may lead to the emergence of transdifferentiated fibroblast-like cells in tumour stroma and in the tumour-surrounding tissue.
SAYP is a dual-function transcription coactivator of RNA polymerase II. It is a metazoan-specific factor with regulated expression that is apparently involved in signaling pathways controlling normal development. In Drosophila, SAYP is maternally loaded into the embryo, participates in cell cycle synchronization in early syncytial embryos, and is indispensible for early embryogenesis. SAYP is abundant in many embryonic tissues and imaginal discs in larvae and is crucial for oogenesis in adults. PHF10 is a mammalian homologue of SAYP whose expression is confined to certain tissues in adults. The molecular mechanism of the SAYP function is related to the conserved domain SAY, which assembles a nuclear supercomplex BTFly consisting of Brahma and TFIID coactivators. We suggest that nuclear supercomplexes may be important means of gene-specific regulation of transcription during development.
We show characteristic morphological changes corresponding to epithelial-mesenchymal transition (EMT) program fulfillment in PANC1 cell line stimulated with TGFβ1. Our results support downregulation of E-cadherin protein. We show 5- and 28-fold increase in SNAI1 and SNAI2 expression levels and 25- and 15-fold decrease in CDH1 and KRT8 expression levels, respectively, which confirms the EMT-program fulfillment. We demonstrate downregulation of expression of pancreatic master genes SOX9, FOXA2, and GATA4 (2-, 5-, and 4-fold, respectively) and absence of significant changes in HES1, NR5A2, and GATA6 expression levels in the cells stimulated with TGFβ1. Our results indicate the absence of induction of expression of PTF1A, PDX1, HNF1b, NEUROG3, RPBJL, NKX6.1, and ONECUT1 genes, which are inactive in PANC1 cell line after the EMT stimulated by TGFβ1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.