We prove the existence of a stationary solution of any given mass to the coagulation-fragmentation equation without assuming a detailed balance condition, but assuming instead that aggregation dominates fragmentation for small particles while fragmentation predominates for large particles. We also show the existence of a self-similar solution of any given mass to the coagulation equation and to the fragmentation equation for kernels satisfying a scaling property. These results are obtained, following the theory of Poincaré-Bendixson on dynamical systems, by applying the Tykonov fixed point theorem on the semigroup generated by the equation or by the associated equation written in "self-similar variables". Moreover, we show that the solutions to the fragmentation equation with initial data of a given mass behaves, as t → +∞, as the unique self similar solution of the same mass. 2004 Elsevier SAS. All rights reserved.
RésuméPour toute masse donnée, nous démontrons l'existence d'au moins une solution stationnaire pour l'équation de coagulationfragmentation. Nous ne faisons pas d'hypothèse d'équilibre en détails sur les coefficients mais nous supposons que la coagulation domine la fragmentation pour les particules de petite taille et que la fragmentation est prépondérante pour les particules de grande taille. Nous démontrons également l'existence de solutions auto-similaires pour l'équation de coagulation et pour l'équation de fragmentation sous une hypothèse d'homogéneité sur les noyaux. Ces résultats sont obtenus, s'inspirant de la preuve
We develop the Cauchy theory of the spatially homogeneous inelastic Boltzmann equation for hard spheres, for a general form of collision rate which includes in particular variable restitution coefficients depending on the kinetic energy and the relative velocity as well as the sticky particles model. We prove (local in time) non-concentration estimates in Orlicz spaces, from which we deduce weak stability and existence theorem. Strong stability together with uniqueness and instantaneous appearance of exponential moments are proved under additional smoothness assumption on the initial datum, for a restricted class of collision rates. Concerning the long-time behaviour, we give conditions for the cooling process to occur or not in finite time. (2000): 76P05 Rarefied gas flows, Boltzmann equation [See also 82B40, 82C40, 82D05].
Mathematics Subject Classification
Conditions for the emergence of strong Turing–Hopf instabilities in the Lengyel–Epstein CIMA reaction–diffusion model are found. Under these conditions, time periodic spatially inhomogeneous solutions can be induced by diffusive instability of the spatially homogeneous limit cycle emerging at a supercritical Bautin–Hopf bifurcation about the unstable steady state of the reaction system. We report numerical simulations by an Alternating Directions Implicit (ADI) method that show the formation of twinkling patterns for a chosen parameter value, thus confirming our theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.