The paper presents the results of optimization of the geometric parameters of the simplified wall jet cooling system using a modified Adjoint Shape optimization method for algebraic systems of equations (Discrete Adjoint Optimization). The modification consists in using a linearized discrete system of equations with the replacement of derivatives by their finite-volume approximations. The jet flowed through a duct and out from a nozzle. The duct was inclined at an angle of 35 degrees to the cooled wall. The mean velocity ratio between the jet and the main flow was set to 2. The total heat flux on the cooled wall was taken as a cost function. The problem was considered in a two-dimensional stationary turbulent formulation (RANS). As a result of optimization, the shape of the duct changed significantly, affecting the flow inside it. The optimization led to the disappearance of the recirculation zone and reattaching of the jet to the cooled wall. As a result of the optimization performed, the heat flux at the wall increased by 20%.
We present the results of optimization of microwave plasma generation in a prototypical diamond film deposition device by means of numerical simulation. The modification of the device was done by changing the shape of microwave resonant chamber, where the plasma generation occurs, in a way to focus the discharge near the outlet nozzle. The best results were obtained for a configuration with an addition of a conducting rod located on the axis of the chamber. This modified configuration provided a two orders of magnitude increase in electron number density near the nozzle exit and about 10 time increase (up to 5%) in dissociation degree of hydrogen molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.