ВЫЧИСЛИТЕЛЬНАЯ ЭФФЕКТИВНОСТЬ ДЛЯ РЕШЕНИЯ ЗАДАЧИ ОПТИМИЗАЦИИ ОБОЛОЧЕК ВРАЩЕНИЯ ПРИ ОГРАНИЧЕНИЯХ НА ФЛАТТЕРМ. В. Чугунов, Н. Д. Кузьмичёв, И. Н. Полунина ФГБОУ ВПО «Мордовский государственный университет им. Н. П. Огарёва» (г. Саранск, Россия) Теория и практика оптимизации занимает важное место в естествознании и технике. При этом алгоритмы решения оптимизационных задач требуют многократного обращения к процедуре вычисления функций оптимизации (прямой расчет). Эти функции, как правило, заданы алго-ритмически в пространстве высокой размерности и трудновычислимы. В связи с этим акту-альной является задача построения упрощенных метамоделей (аппроксимаций) для объекта оптимизации, адекватных исходной «точной» модели в некоторой подобласти пространства и не требующих для своего анализа больших вычислительных затрат. Целью данной работы является количественная оценка вычислительной эффективности решения оптимизационных задач, основанных на аппроксимациях разного типа. В качестве объекта оптимизации рассма-тривается оболочка вращения, подверженная флаттеру. Исходной моделью является конечноэ-лементная модель оболочки, для которой образующая и распределение толщины вдоль мериди-ана заданы Безье-функциями. Определение критического параметра флаттера в алгебраической части сводится к решению несимметричной обобщенной задачи на собственные значения, ко-торая реализована программно в виде AddIn-приложения SolidWorks. Для построения упро-щенных метамоделей используются аппроксимации двух видов: локальные и промежуточные. В первом случае решение задачи сводится к применению метода Хана и Пауэлла, во втором -к поэтапной замене исходной модели метамоделями в подобластях пространства оптимиза-ции конечных размеров, анализу адекватности аппроксимаций и определению на этой основе стратегии поиска. Нами была решена задача весовой оптимизации оболочки, подверженной сверхзвуковому флаттеру с использованием локальных и промежуточных многоточечных ап-проксимаций. В качестве управляемых параметров в статье рассматриваются координаты клю-чевых точек Безье; проводится сравнительный анализ вычислительной эффективности решения в каждом из этих двух случаев. В качестве критерия вычислительной эффективности рассма-тривается количество обращений к процедуре прямого расчета.Ключевые слова: оптимизация, нелинейное математическое программирование, флаттер, метамодель оптимизации, локальная многоточечная аппроксимация, промежуточная мно-готочечная аппроксимация COMPUTATIONAL EFFICIENCY FOR OPTIMIZATION PROBLEMS OF REVOLUTION SHELLS WITH FLUTTER CONSTRAINTS M. V. Chugunov, N. D. Kuzmichеv, I. N. Polunina Ogarev Mordovia State University (Saransk, Russia)The theory and practice of optimization takes an important place in natural sciences and engineering. Thus, algorithms of solving the optimization problems require repeated reference to the evaluation procedure of the optimization functions (direct computing). As a rule, these functions are algorithmically specified in the high-dimensional space and computationally expensive. In this context, the r...
Introduction. National Technology Initiatives (STI), designed to develop and implement High-Tech tools into engineering practice and based on the Industry 4.0 concept, require appropriate technical solutions for all phases of the product lifecycle from design to disposal. Implementation of the concept involves the formation of technological groups and markets in different directions in particular one of the emerging markets of STI is Auto.Net. At the same time, the product design stage is basic and should be implemented in a form ensuring the entire life cycle of the product on the principles of this concept. Materials and Methods.The article presents the methodology and results of designing an electric vehicle-tricycle in the integrated CAD/CAE systems. The design process is the development of digital parametric models of different types and levels on a top-down and bottom-up basis. The parametric properties of models provide the ability to develop design solutions efficiently, including design, analysis and optimization. The design solutions are developed in the CAD/CAE/CAM/PDM/PLM SolidWorks (Motion, Simulation) software. Results. The results of the study are rational design paths for the structures of the class under consideration in the SolidWorks software, as well as design solution of the electric tricycle-vehicle in the form of a system of integrated parametric models, including 3D models of parts and assemblies, models of solid-state mechanics, finite-element models for solving problems of mechanics of the deformed solid body in the form of linear and non-linear statics, linear dynamics, parametric optimization. Videos of the results are provided for illustrative purposes. Discussion and Conclusion. In the research, the design trajectory of the electric vehicletricycle based on correct formulation for the design problems and providing the rational choice of means, tools, and technologies from basic SolidWorks functionality is presented. The trajectory provides both an efficient solution to design problems and an assessment of the adequacy of the results obtained. In terms of the possible perspective of this work, it is necessary to specify the solution of optimization tasks according to various criteria of project efficiency and the development of an integrated (cyber-physical) model of electric vehicle-tricycle, which meets the requirements of digital twins. At the same time, bidirectional associative links between virtual and physical components of the integrated model will solve a number of additional problems: control of the accuracy of digital models, giving the digital model synergistic properties, planning of the trajectory and unmanned control on the principles of IoT (Internet of Things).
Аллахвердиев Сурхай Рагим оглы-академик Российской Академии Естествознания, профессор кафедры лесной индустрии, Бартынский государственный университет, профессор кафедры экологии и природопользования, ФГБОУ ВО «Московский педагогический государственный университет», доктор биологических наук, профессор (Бартын, Турция) Булгаков Алексей Григорьевич-профессор Института строительного дела, Дрезденский технический университет, доктор технических наук, профессор (Дрезден, Германия) Димитров Валерий Петрович-заведующий кафедрой управления качеством, ФГБОУ ВО «Донской государственный технический университет», доктор технических наук, профессор, ORCID: 0000-0003-1439-1674 (Ростов-на-Дону, Россия) Ерофеев Владимир Трофимович-академик Российской академии архитектуры и строительных наук, декан архитектурно-строительного факультета, ФГБОУ ВО «МГУ им. Н. П. Огарёва», доктор технических наук, профессор (Саранск, Россия) Железникова Ольга Евгеньевна-директор Института электроники и светотехники, ФГБОУ ВО «МГУ им. Н. П. Огарёва», кандидат технических наук, доцент (Саранск, Россия) Игумнов Леонид Александрович-директор Научно-исследовательского института механики, заведующий кафедрой теоретической, компьютерной и экспериментальной механики, ФГАОУ ВО «Нижегородский государственный университет им. Н. И. Лобачевского», доктор физико-математических наук, профессор (Нижний Новгород, Россия) Кечемайкин Владимир Николаевич-директор Рузаевского института машиностроения, ФГБОУ ВО «МГУ им. Н. П. Огарёва», кандидат экономических наук (Саранск, Россия) Котин Александр Владимирович-заведующий кафедрой механизации переработки сельскохозяйственной продукции, ФГБОУ ВО «МГУ им. Н. П. Огарёва», доктор технических наук, профессор, ORCID: 0000-0003-0078-1866 (Саранск, Россия) Кусмарцев Федор Васильевич-декан физического факультета, Университет Лафборо, кандидат физико-математических наук (Лафборо, Великобритания) Кухарев Олег Николаевич-ректор, ФГБОУ ВО «Пензенский государственный аграрный университет», доктор технических наук, профессор, ORCID: 0000-0002-3519-4066 (Пенза, Россия) Микаева Светлана Анатольевна-профессор кафедры ПР-4 «Электротехника и электроника», ФГБОУ ВО «Московский технологический университет», доктор технических наук, профессор (Москва, Россия) Нищев Константин Николаевич-директор Института физики и химии, ФГБОУ ВО «МГУ им. Н. П. Огарёва», кандидат физико-математических наук, доцент, ORCID: 0000-0001-7905-3700 (Саранск, Россия) Прытков Юрий Николаевич-директор Аграрного института, ФГБОУ ВО «МГУ им. Н. П. Огарёва», доктор сельскохозяйственных наук, профессор (Саранск, Россия) Рябочкина Полина Анатольевна-главный научный сотрудник лаборатории оптической спектроскопии лазерных материалов, ФГБОУ ВО «МГУ им. Н. П. Огарёва», доктор физикоматематических наук, доцент, ORCID: 0000-0001-8503-8486 (Саранск, Россия) Салем Абдель-Бадех Мохамед-руководитель Исследовательских лабораторий в области искусственного интеллекта и знаний, профессор факультета компьютерных и информационных наук, университет «Ain Shams», доктор наук в области компьютер...
Introduction. The “Smart Agroˮ committee of Research and Education Center “Engineering of the Future” has identified a number of tasks relevant for improving the efficiency of precision, soil-protecting and conservation agriculture. One of these tasks is the development of a digital multi-agent system, which provides a number of services for agricultural enterprises, developers and manufacturers of agricultural machinery. The purpose of the present study is to model an autonomous mobile robotic platform, including the development of software and hardware for trajectory control. Materials and Methods. To solve the problem, there are used modern CAx systems and their applications, the methods of 3D and full-body modeling, and the method of numerical solution of problems in solid mechanics. To expand and improve the standard functionality of CAx-systems (SolidWorks) in the software implementation of trajectory control algorithms, the methods and technologies of programming using API SolidWorks, VisualStudio C++ (MFC, ATL, COM) are used, and to build physical full-scale models ‒ Arduino and fischertechnik platforms. Results. The result of the study is a software and hardware module of trajectory control for an integrated (physical and virtual) model of a mobile robotic platform, which can be provided to the consumer as a service for technology autonomation. For the developed integrated model, control algorithms for various types of trajectories were tested. Discussion and Conclusion. The developed integrated software and hardware model of trajectory control can be used by developers and manufacturers of agricultural machinery, and directly by agro-enterprises for implementing typical technological processes. A feature of the implementation is an open hardware and software interface that provides the integration of mobile robotic platforms based on a digital multi-agent system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.