Measurements of the dynamic spall strength in aluminum, copper, and Metglas shocked by a high-power laser to hundreds of kilobars pressure are reported. The strain rates in these experiments are of the order of 10 7 s Ϫ1 , which cannot be reached in impact experiments. The free-surface velocity behavior associated with spallation is characterized by oscillations caused by the reverberations of the spall layer. An optically recording velocity interferometer system was developed to measure the free-surface velocity time history. This diagnostic method has the advantages of being a noninterfering system and produces a highly accurate continuous measurement in time. The spall strength was calculated from the free-surface velocity as a function of the strain rate. The results show a rapid increase in the spall strength, suggesting that a critical phenomenon occurs at strain rates ϳ10 7 s Ϫ1 , expressed by the sudden approach to the theoretical value of the spall strength.
The approach to the ultimate strength of metals is determined experimentally. The ultimate strength of metals was calculated using a realistic wide-range equation of state. The strength of metals was measured using shock waves created in aluminum and copper foils with a short- (20–100 ps) pulse high-power laser. The strength of the materials was determined from the free-surface-velocity time history, which was measured with an optically recording velocity interferometer system. The strain rates in these experiments were in the range (1.5–5)×108 s−1.
This paper suggests a novel route to approach the cold compression curve in laser-plasma induced shock waves. This effect is achieved with a precompression in a diamond anvil cell (DAC). In order to keep the necessary structure of one dimensional shock wave it is required to use a diamond anvil cell with a partially perforated diamond anvil. Precompression pressures of about 50 GPa, that are an order of magnitude higher than the currently reported pressures, are possible to obtain with presentley existing diamond anvil cell technology. The precompressed Hugoniot of Al was calculated for different precompression pressures and it was found that at precompression pressure of 50 GPa the Hugoniot follows the "cold curve" up to about 2 Mbar and 5.2 g/cc. Furthermore, the thermal relative contribution on the Hugoniot curves is calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.