The influence of humidity on the density, shear elastic module, viscosity, and thickness of the mushroom Pleurotus eryngii and Ganoderma lucidum mycelium films was studied. These data were obtained by comparing the theoretical and experimental frequency dependencies of the complex electrical impedance of bulk acoustic wave (BAW) resonator loaded by mycelium film using the least-squares method. This procedure was performed for the BAW resonator with pointed films for the relative humidity range of 17%–56% at the room temperature. As a result, the changes of the density, shear elastic module, viscosity, and thickness of the films under study, due to the water vapor adsorption, were determined. It has been established that the properties of mycelium films are restored after removing from the water vapor. So, these results show the possibility of using investigated mycelium films as sensitive layers for acoustic humidity sensors.
The paper describes a method for determining the properties of thin films: elastic constants, viscosity and density. The method is based on the analysis of changing the characteristics of the acoustic resonator, on the surface of which the film under study is deposited, in comparison with a free resonator. Using the described method, the properties of two organic films based on the mycelium of basidiomycete Hericium erinaceus (Bull.) Persoon were determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.