Objective: Few studies examined the association between time-of-day of nutrient intake and the metabolic syndrome. Our goal was to compare a weight loss diet with high caloric intake during breakfast to an isocaloric diet with high caloric intake at dinner. Design and Methods: Overweight and obese women (BMI 32.4 6 1.8 kg=m 2 ) with metabolic syndrome were randomized into two isocaloric (1400 kcal) weight loss groups, a breakfast (BF) (700 kcal breakfast, 500 kcal lunch, 200 kcal dinner) or a dinner (D) group (200 kcal breakfast, 500 kcal lunch, 700 kcal dinner) for 12 weeks. Results: The BF group showed greater weight loss and waist circumference reduction. Although fasting glucose, insulin, and ghrelin were reduced in both groups, fasting glucose, insulin, and HOMA-IR decreased significantly to a greater extent in the BF group. Mean triglyceride levels decreased by 33.6% in the BF group, but increased by 14.6% in the D group. Oral glucose tolerance test led to a greater decrease of glucose and insulin in the BF group. In response to meal challenges, the overall daily glucose, insulin, ghrelin, and mean hunger scores were significantly lower, whereas mean satiety scores were significantly higher in the BF group. Conclusions: High-calorie breakfast with reduced intake at dinner is beneficial and might be a useful alternative for the management of obesity and metabolic syndrome.
Breakfast consumption acutely affects clock and clock-controlled gene expression leading to normal oscillation. Breakfast skipping adversely affects clock and clock-controlled gene expression and is correlated with increased postprandial glycemic response in both healthy individuals and individuals with diabetes.
Aims/hypothesis Since protein ingestion is known to stimulate the secretion of glucagon-like peptide-1 (GLP-1), we hypothesised that enhancing GLP-1 secretion to harness its insulinotropic/beta cell-stimulating activity with whey protein pre-load may have beneficial glucose-lowering effects in type 2 diabetes. Methods In a randomised, open-label crossover clinical trial, we studied 15 individuals with well-controlled type 2 diabetes who were not taking any medications except for sulfonylurea or metformin. These participants consumed, on two separate days, 50 g whey in 250 ml water or placebo (250 ml water) followed by a standardised high-glycaemic-index breakfast in a hospital setting. Participants were randomised using a coin flip. The primary endpoints of the study were plasma concentrations of glucose, intact GLP-1 and insulin during the 30 min following meal ingestion. Results In each group, 15 patients were analysed. The results showed that over the whole 180 min post-meal period, glucose levels were reduced by 28% after whey pre-load with a uniform reduction during both early and late phases. Insulin and C-peptide responses were both significantly higher (by 105% and 43%, respectively) with whey pre-load. Notably, the early insulin response was 96% higher after whey. Similarly, both total GLP-1 (tGLP-1) and intact GLP-1 (iGLP-1) levels were significantly higher (by 141% and 298%, respectively) with whey pre-load. Dipeptidyl peptidase 4 plasma activity did not display any significant difference after breakfast between the groups. Conclusions/interpretation In summary, consumption of whey protein shortly before a high-glycaemic-index breakfast increased the early prandial and late insulin secretion, augmented tGLP-1 and iGLP-1 responses and reduced postprandial glycaemia in type 2 diabetic patients. Whey protein may therefore represent a novel approach for enhancing glucoselowering strategies in type 2 diabetes. Trial registration ClinicalTrials.gov NCT01571622 Funding The Israeli Ministry of Health and Milk Council funded the research.
The circadian clock controls energy homeostasis by regulating circadian expression and/or activity of enzymes involved in metabolism. Disruption of circadian rhythms may lead to obesity and metabolic disorders. We tested whether the biological clock controls adiponectin signaling pathway in the liver and whether fasting and/or high-fat (HF) diet affects this control. Mice were fed low-fat or HF diet and fasted on the last day. The circadian expression of clock genes and components of adiponectin metabolic pathway in the liver was tested at the RNA, protein, or enzyme activity level. In addition, serum levels of glucose, adiponectin, and insulin were measured. Under low-fat diet, adiponectin signaling pathway components exhibited circadian rhythmicity. However, fasting and HF diet altered this circadian expression; fasting resulted in a phase advance, and HF diet caused a phase delay. In addition, adenosine monophosphate-activated protein kinase levels were high during fasting and low during HF diet. Changes in the phase and daily rhythm of clock genes and components of adiponectin signaling pathway as a result of HF diet may lead to obesity and may explain the disruption of other clock-controlled output systems, such as blood pressure and sleep/wake cycle, usually associated with metabolic disorders.
BARNEA, MAAYAN, AVI SHAMAY, ALIZA H. STARK, AND ZECHARIA MADAR. A high-fat diet has a tissue-specific effect on adiponectin and related enzyme expression. Obesity. 2006;14:2145-2153. Objective: This study was designed to test whether adiponectin plays a role in diet-induced obesity and insulin resistance and acts as a mediator to induce or inhibit specific metabolic pathways involved in lipid metabolism Research Methods and Procedures: Forty C57BL/6J male mice were fed either a high-fat (HF) or control diet for 4 months, and adiponectin, its receptors, and enzyme expression in liver and muscle tissue were measured. Results: Mice fed the HF diet exhibited significantly greater weight gain, abnormal oral glucose tolerance test curves, and elevated homeostasis model assessment of insulin resistance (5.3 Ϯ 0.89 vs. 2.8 Ϯ 0.39). A significant reduction of adiponectin RNA expression (51%) and protein levels (15%) was observed in the adipose tissue of HF animals; however, serum adiponectin levels did not differ between groups (7.12 Ϯ 0.34 g/mL vs. 6.44 Ϯ 0.38 g/mL). Expression of hepatic mRNA of AdipoR1 and AdipoR2 was reduced by 15% and 25%, respectively, in animals fed the HF diet. In contrast, receptor mRNA expression of AdipoR1 and AdipoR2 increased by 25% and 30%, respectively, in muscle tissue. No effect was found on hepatic adenosine monophosphate-activated protein kinase expression; however, a significant reduction of phosphoadenosine monophosphate kinase levels in muscles was observed. Hepatic acetyl-coenzyme A carboxylase was similar between groups, but in muscles, the inactive form phosphoacetylcoenzyme A carboxylase was significantly reduced (p Ͻ 0.05). Discussion: The HF diet led to decreased insulin sensitivity accompanied by impaired activity of adiponectin-related enzymes in skeletal muscles but not in the liver. These results suggest that the HF diet has a tissue-specific effect on adiponectin and associated enzyme expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.