The feasibility of identifying molecular markers linked to disease resistance genes in oats was investigated utilizing random primers in conjunction with polymerase chain reaction technology. A pair of near-isogenic oat lines were screened for polymorphic DNA fragments linked to the stem rust resistance gene Pg3. Two primers were identified which amplified DNA fragments that were polymorphic between the lines analyzed. One primer (ACOpR-2) was shown to be completely linked to the Pg3 locus; the other primer was not linked to either the ACOpR-2 or the Pg3 loci. This type of analysis, combined with rapid leaf disc DNA extraction techniques, offers an effective means of identifying useful molecular markers and of applying them to plant breeding selection strategies.
SummaryThe Arabidopsis pollen grain is covered by a lipidic pollen coat representing select constituents released upon the programmed cell death of the anther secretory tapetum. These constituents originate primarily from two specialized tapetal organelles, elaioplasts and tapetosomes. Tapetosomes are distinctive Brassicaceae organelles derived from the endoplasmic reticulum that store triacylglycerols, flavonoids, alkanes, and proteins.The tapetosome triacylglycerols are found within lipid droplets surrounded by the highly variable tapetal oleosins that eventually generate the most abundant proteins of the pollen coat. Many questions remain regarding the sub-cellular targeting of tapetal oleosins as well as their role in tapetosome formation. Translational fusions of different tapetal oleosins or their derived domains to marker proteins were introduced into Arabidopsis thaliana to investigate their localization, processing and function.Arabidopsis tapetal oleosins were shown to be proteolytically cleaved following tapetum degeneration and different protein domains were targeted to the pollen coat despite vast differences in composition and size. Importantly, specific fusions were discovered to affect distinct aspects of tapetosome formation.This report not only highlighted the critical role of individual tapetal oleosin domains in Arabidopsis tapetosome formation, but revealed translational fusions to be a valuable tool in deciphering this evidently complex developmental process.
Synthetic hexaploid wheat (SHW) lines are created as pre-breeding germplasm to diversify the D subgenome of hexaploid wheat and capitalize upon the untapped genetic diversity of the Aegilops tauschii gene pool. However, the phenotypes observed in the Ae. tauschii parents are not always recovered in the SHW lines, possibly due to inter-subgenome interactions. To elucidate this post-polyploidization genome reprogramming phenomenon, we performed RNA-seq of four SHW lines and their corresponding tetraploid and diploid parents, across ten tissues and three biological replicates. Homoeologue expression bias (HEB) analysis using more than 18,000 triads suggests massive suppression of homoeoalleles of the D subgenome in SHWs. Comparative transcriptome analysis of the whole-genome gene set further corroborated this finding. Alternative splicing analysis of the high-confidence genes indicates an additional layer of complexity where all five splice events are identified, and retained intron is predominant. Homoeologue expression upon resynthesis of hexaploid wheat has implications to the usage and handling of this germplasm in breeding as it relates to capturing the effects of epistatic interaction across subgenomes upon polyploidization. Special considerations must be given to this germplasm in pre-breeding activities to consider the extent of the inter-subgenome interactions on gene expression and their impact on traits for crop improvement.
We have previously isolated a CCAAT-binding factor B subunit gene (BnCBF-B) from Brassica napus that is widely expressed in different plant tissues and whose role is still unknown. To investigate the importance of this transcription factor subunit in plant reproductive tissues, we targeted antisense BnCBF-B transcripts to the tapetum of transgenic B. napus plants.Of the 24 independent transformants, 13 yielded reduced quantities of viable pollen, of which five were unable to produce the elongated siliques indicative of normal seed set. The decrease in pollen viability probably resulted from the precocious degeneration of the tapetal cell layer observed in these plants. Surprisingly, the male-sterile phenotype was also accompanied by a decrease in female fertility, which could be due to the expression of the antisense BnCBF-B transcripts in the female reproductive structures of the transgenic plants. These results suggest that the BnCBF-B gene plays a critical non-redundant role in plant reproductive tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.