Insulin resistance and hepatic lipid accumulation constitute the metabolic underpinning of nonalcoholic steatohepatitis (NASH). We tested the hypothesis that saroglitazar, a PPAR α/γ agonist would improve nASH in the diet-induced animal model of nAfLD. Mice received chow diet and normal water (CDNW) or high fat western diet and ad lib sugar water (WDSW). After 12 weeks, WDSW fed mice were randomized to receive (1) WDSW alone, (2) WDSW + vehicle, (3) WDSW + pioglitazone or (4) WDSW + saroglitazar for an additional 12 weeks. Compared to mice on WDSW and vehicle controls, mice receiving WDSW + saroglitazar had lower weight, lower HOMA-IR, triglycerides, total cholesterol, and ALT. Saroglitazar improved steatosis, lobular inflammation, hepatocellular ballooning and fibrosis stage. NASH resolved in all mice receiving saroglitazar. These effects were at par with or superior to pioglitazone. Molecular analyses confirmed target engagement and reduced oxidative stress, unfolded protein response and fibrogenic signaling. Transcriptomic analysis further confirmed increased PPARtarget expression and an anti-inflammatory effect with saroglitazar. Lipidomic analyses demonstrated that saroglitazar also reduced triglycerides, diglycerides, sphingomyelins and ceramides. These preclinical data provide a strong rationale for developing saroglitazar for the treatment of nASH in humans. Nonalcoholic fatty liver disease (NAFLD) encompasses a continuum of liver disease ranging from fatty liver (NAFL) to steatohepatitis (NASH), fibrosis and cirrhosis 1-3. This rising prevalence of NASH is accompanied with an alarming increase in the number of patients with cirrhosis and hepatocellular carcinoma (HCC) necessitating liver transplantation 4,5. Dynamic models of disease progression predict a doubling of the burden of end-stage liver disease from the NAFLD epidemic by 2030 if left unmanaged 6. Despite progress in understanding the clinical drivers of disease progression and pathogenesis of NAFLD and an exponential increase in clinical trials investigating the therapeutic potential and identifying therapeutic targets, there are immediate unmet medical needs and challenges and the disease still remains without any approved drugs 7,8. A key consideration in therapeutic development for NASH is the identification of a rational therapeutic target. NASH often develops in the context of excess adiposity and systemic insulin resistance 9. The current paradigm for the pathogenesis of NASH starts with increased delivery of lipids such as free fatty acids (FFA), carbohydrates along with inflammatory cytokines and gut-microbiome-derived products e.g. endotoxin 10 .
Angiogenesis, or new blood vessel formation, is an important process in the pathogenesis of several diseases and thus has been targeted for the prevention and treatment of many disorders. However, the anti-angiogenic agents that are currently in use are mainly synthetic compounds and humanized monoclonal antibodies, which are either expensive or toxic, thereby limiting their use in many patients. Therefore, it is necessary to identify less toxic, inexpensive, novel and effective anti-angiogenic molecules. Several studies have indicated that natural plant products can meet these criteria. In this review, we discuss the anti-angiogenic properties of natural compounds isolated from plants and the molecular mechanisms by which these molecules act. Finally, we summarize the advantages of using plant products as anti-angiogenic agents. Compared with currently available anti-angiogenic drugs, plant products may not only have similar therapeutic potential but are also inexpensive, less toxic and easy to administer. However, novel and effective strategies are necessary to improve their bioavailability for clinical use.
Although beta 2 adrenergic receptors (β2ADR) are present in the keratinocytes, their role in cutaneous squamous cell tumorigenesis needs to be ascertained. For the first time, we report here that selective β2ADR antagonists by inhibiting β2ADR actions significantly retarded the progression of ultraviolet B (UVB) induced premalignant cutaneous squamous cell lesions. These antagonists acted by inhibiting vascular endothelial growth factor‐A (VEGF) mediated angiogenesis to prevent UVB radiation‐induced squamous cell carcinoma of the skin.
As mobile phone usage is growing rapidly, there is a need for a comprehensive analysis of the literature to inform scientific debates about the adverse effects of mobile phone radiation on sperm quality traits. Therefore, we conducted a meta-analysis of the eligible published research studies on human males of reproductive age. Eleven studies were eligible for this analysis. Based on the meta-analysis, mobile phone use was significantly associated with deterioration in semen quality (Hedges’s g = -0.547; 95% CI: -0.713, -0.382; p < 0.001). The traits particularly affected adversely were sperm concentration, sperm morphology, sperm motility, proportion of non-progressive motile sperm (%), proportion of slow progressive motile sperm (%), and sperm viability. Direct exposure of spermatozoa to mobile phone radiation with in vitro study designs also significantly deteriorated the sperm quality (Hedges’s g = -2.233; 95% CI: -2.758, -1.708; p < 0.001), by reducing straight line velocity, fast progressive motility, Hypo-osmotic swelling (HOS) test score, major axis (µm), minor axis (µm), total sperm motility, perimeter (µm), area (µm 2), average path velocity, curvilinear velocity, motile spermatozoa, and acrosome reacted spermatozoa (%). The strength of evidence for the different outcomes varied from very low to very high. The analysis shows that mobile phone use is possibly associated with a number of deleterious effects on the spermatozoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.