A new series of aza-BODIPY derivatives (4 a-4 c, 5 a,c, and 6 b,c) were synthesized and their excited-state properties, such as their triplet excited state and the yield of singlet-oxygen generation, were tuned by substituting with heavy atoms, such as bromine and iodine. The effect of substitution has been studied in detail by varying the position of halogenation. The core-substituted dyes showed high yields of the triplet excited state and high efficiencies of singlet-oxygen generation when compared to the peripheral-substituted systems. The dye 6 c, which was substituted with six iodine atoms on the core and peripheral phenyl ring, showed the highest quantum yields of the triplet excited state (Φ(T) =0.86) and of the efficiency of singlet-oxygen generation (Φ(Δ) =0.80). Interestingly, these dyes were highly efficient as photooxygenation catalysts under artificial light, as well as under normal sunlight conditions. The uniqueness of these aza-BODIPY systems is that they are stable under irradiation conditions, possess strong red-light absorption (620-680 nm), exhibit high yields of singlet-oxygen generation, and act as efficient and sustainable catalysts for photooxygenation reactions.
We have developed a novel aza-BODIPY probe for the sensitive colorimetric detection of the nitrite ions in the aqueous medium by a simple and direct method. This probe selectively recognizes the nitrite ions through a distinct visual color change from bright blue to intense green with a sensitivity of 20 ppb. Uniquely, this probe can be coated on a glass surface to fabricate a simple solid-state dipstick device that can be used for the visual detection of the nitrite ions in the presence of other competing anions in distilled as well as natural water resources like a sea, lake, and river. Furthermore, this probe can be used for the sensitive detection of the nitrate ions when coupled to a reduction step. Our results demonstrate that this probe not only can be used for the on-site analysis and quantification but also can replace the conventional spot test carried out for the nitrite ions in the laboratory practical experiments.
Aza‐BODIPY systems possess strong red absorption, exhibit high triplet excited states, and singlet‐oxygen generation yields. The aza‐BODIPY systems synthesized by D. Ramaiah et al. and reported in their Full Paper on are stable under irradiation conditions, act as green catalysts for photooxygenation reactions, and are efficient sensitizers for photodynamic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.