We describe the instantaneous fabrication of a highly porous three-dimensional (3D) nanostructured manganese oxides-reduced graphitic oxide (MnOx-rGO) electrode by using a pulse-photonic processing technique.
We report a photonic technique to instantaneously synthesize cobalt oxide reduced graphitic oxide (CoOx-rGO) supercapacitor electrodes. The electrode processing is achieved through rapidly heating the precursor material by irradiation of high-energy pulsed mostly visible light from a xenon lamp. Due to the short duration of the light pulse, we prepared the electrodes at room temperature instantaneously (ms), thus eliminating the several hours of processing times of the conventional techniques. The as-prepared electrodes exhibited a highly porous morphology, allowing for enhanced ionic transport during electrochemical interactions. The electrochemical properties of the CoOx-rGO electrodes were studied in 1 M KOH aqueous electrolyte. The non-rectangular cyclic voltammetry (CV) curves with characteristic redox peaks indicated the pseudocapacitive charge storage mechanism of the electrodes. From the discharge curves at 0.4 mA/cm2 and 1.6 A/g constant current densities, the electrode showed areal specific capacitance of 17 mF/cm2 and specific capacitance of 69 F/g, respectively. Cyclic stability was tested by performing 30,000 galvanostatic charge–discharge (GCD) cycles and the electrode exhibited 65% capacitance retention, showing its excellent electrochemical performance and ultra-long cycle life. The excellent electrochemical electrode properties are attributed to the unique processing technique, optimum processing parameters, improved conductivity due to the presence of rGO, and highly porous morphology which offers a high specific surface area. The novel photonic processing we report allows for high-temperature heating of the precursor films achieved via non-radiative recombination of photogenerated electron holes pairs during irradiation. Such extremely quick (ms) heating followed by instantaneous cooling results in the formation of a dense and robust bottom layer of the electrode, resulting in a long cycle life.
We report a novel photonic processing technique as a next-generation cost-effective method to instantaneously synthesize nanostructured manganese-cobalt mixed oxide reduced graphitic oxide (Mn-Co-rGO) as supercapacitor electrodes for energy storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.