The work is devoted to the study of the effect of an electric explosion on the selectivity of the destruction of quartz raw materials. The object of the study is quartz ore of the Nadyrbay deposit of the Republic of Kazakhstan. An electrohydroimpulse plant for crushing and grinding quartz raw materials has been developed and assembled. Using the electrohydroimpulse method, the granulometric composition of quartz can be adjusted. This makes it possible to adjust the magnitude of the voltage in the discharge channel and time. In this technology, quartz ore processing was carried out with an increase in the discharge voltage of the storage from 14 kV to 25 kV, the length of the interelectrode distance from 8 to 12, the capacitance of the capacitor 0.5 µF, 0.75 µF and the processing time of 5 min. Using the electrohydroimpulse method, quartz ore particles with an initial fraction of 5 mm, 10 mm and 1 mm were crushed to 0.8. The results of the grinding of quartz raw materials with the influence of an underwater electric explosion in a liquid medium allowed us to determine the degree of grinding of the material. The obtained results can be used in the course of studying the characteristics of crushing and grinding of ores. In the food industry, quartz sand within 0.25–0.5 millimeters can be used as a filler to create filters for water purification, as well as products from oil, industrial effluents, etc. Particles ranging in size from 0.5 to 1 millimeter can be used for rough processing of metal, stone and glass. The structural and quantitative analysis of powdered quartzite samples was made using a scanning electron microscope and the stoichiometry of the elements was calculated
The work is devoted to the study of the parameters of an installation for heating a coolant using liquid forcing through throttle openings. A scheme of a full-size experimental stand has been developed and the principles of operation are described in detail. For visual observation of the state of the liquid at different angular speeds of rotation of the rotor, a transparent drum model is made. The influence of the shape of the rotor skirt and the depth of its immersion in the liquid on the filling capacity of the rotor cavity at an angular velocity from 42 to 314 rad/s has been determined. The optimal parameters of the depth of immersion of the drum skirt with a diameter of 0.5 m in the liquid, at low rotor speeds of 16, 24, 32 rad/s, were obtained. The angle of inclination is calculated and it is experimentally proved that for a conical shape it is 5 degrees. It was found that at angular velocities of the rotor more than 100 rad/s, the shape and depth of immersion of the skirt in the liquid do not affect the filling of the rotor, since the feed is higher than its flow through the throttle openings. It is shown that the use of rotational forces to heat the liquid allows using an electric motor with less power, since it is spent only on unwinding the rotor with the liquid. The calculated dependence of the liquid pressure on the side walls of the rotor, the liquid heating temperature on the angular velocity of rotation of the rotor and on two values of the area of the throttle openings, at 31.4·10-6 m2 and 64.34·10-6 m2, is obtained. When the total area of the throttle openings is doubled, the temperature of the liquid heating at the same angular velocities increases from 35.6 °C to 82.5 °C. The above installation parameters allow you to get hot water when using small shell-and-tube heat exchangers
This article proposes a method for grinding coal based on the use of the energy of a pulsed shock wave resulting from a spark electric discharge in a liquid. The main purpose of the scientific work is the development of an electric pulse device for producing coal powder, the main component of coal-water fuel. The diameter of the initial coal fraction averaged 3 mm, and the size of the resulting product was 250 µm.To achieve this goal, the dependence of the length of a metal rod electrode (positive electrode) on the length and diameter of its insulation is investigated. Various variants of the shape of the base (bottom) of the device acting as a negative electrode are considered, and an effective variant based on the results of coal grinding is proposed. An experimental electric pulse installation is described, the degree of coal grinding is determined depending on the geometric parameters. The optimal characteristics of the obtained coal powder have been established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.