Gene therapy is the process of introducing foreign genomic materials into host cells to elicit a therapeutic benefit. Although initially the main focus of gene therapy was on special genetic disorders, now diverse diseases with different patterns of inheritance and acquired diseases are targets of gene therapy. There are 2 major categories of gene therapy, including germline gene therapy and somatic gene therapy. Although germline gene therapy may have great potential, because it is currently ethically forbidden, it cannot be used; however, to date human gene therapy has been limited to somatic cells. Although numerous viral and nonviral gene delivery systems have been developed in the last 3 decades, no delivery system has been designed that can be applied in gene therapy of all kinds of cell types in vitro and in vivo with no limitation and side effects. In this review we explain about the history of gene therapy, all types of gene delivery systems for germline (nuclei, egg cells, embryonic stem cells, pronuclear, microinjection, sperm cells) and somatic cells by viral [retroviral, adenoviral, adeno association, helper-dependent adenoviral systems, hybrid adenoviral systems, herpes simplex, pox virus, lentivirus, Epstein–Barr virus)] and nonviral systems (physical: Naked DNA, DNA bombardant, electroporation, hydrodynamic, ultrasound, magnetofection) and (chemical: Cationic lipids, different cationic polymers, lipid polymers). In addition to the above-mentioned, advantages, disadvantages, and practical use of each system are discussed.
Background:The role of endothelial progenitor cells (EPCs) in the maintenance of vascularization following ischemic brain after experimental stroke has been established. Accordingly, in this study, we evaluated the role of circulating EPCs in transient ischemic attack (TIA) patients for future cerebrovascular (CV) events.Materials and Methods:The level of circulating EPCs (staining markers: CD34, CD309) were determined using flow cytometry at 24 h after TIA in thirty consecutive patients. The EPCs level was also evaluated once in thirty healthy volunteers. Over a period of 12 months, all patients were evaluated by an experienced neurologist for recurrent TIA, stroke or death induced by CV disorders.Results:Circulating EPCs increased in patients group following the first attack of TIA when compared with controls. By analysis of covariance, cardiovascular event history, hyperlipidemia, and statin therapy remained significant independent predictors of EPCs. The mean (standard deviation) duration of follow-up was 10.5 (3.1) months (range, 2–12 months). During follow-up, a total of three patients died due to CV accident and four patients experienced again recurrent TIA. By analyzing data with Cox regression, EPC did not predict the future CV events in TIA patients.Conclusion:Increased incidence of future CV events did not occur in those patients with elevated EPCs in the first attack of TIA. The significant predicting factors of EPCs were cardiovascular event history, hyperlipidemia, and statin therapy.
This study was carried out to evaluate combined and singular effects of ethanolic extract of Persian shallot (Allium hirtifolium Boiss) and synbiotic Biomin®IMBO on growth performance, innate immune responses, and antioxidant defense in zebrafish (Danio rerio). Fish with initial weight of 151.90 ± 0.31 mg were allocated in 21 10-L glass aquariums. The experimental groups were as follows: T1, control (without any supplementation); T2, 1% synbiotic; T3, 3% synbiotic; T4, 1% Persian shallot (as a medical plant); T5, 3% Persian shallot; T6, 1% Persian shallot and 1% synbiotic; T7, 3% Persian shallot and 3% synbiotic. At the end of the experiment (60 days), all treatments significantly showed higher final weight (FW), weight gain (WG), WG (%), and specific growth rate (SGR) compared with the fish fed on control diet. Furthermore, both synbiotic Biomin®IMBO and Persian shallot significantly improved intestine immune parameters including lysozyme, alternative complement hemolytic activity (ACH50), total immunoglobulin (total Ig), and myeloperoxidase (MPO) of zebrafish compared to fish fed on control diet (p < 0.05). Also, in all experimental groups, hepatic catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities significantly increased compared to the control group. Whereas, the highest MDA level was observed in the control group compared to the treatments (p < 0.05). Moreover, skin mucus immune parameters of zebrafish have been noticeably improved with synbiotic Biomin®IMBO and Persian shallot compared to fish fed on the control diet (p < 0.05). The results indicate that synbiotic or Persian shallot supplemented diet could enhance the general health status of the zebrafish.
Background:Endothelial progenitor cells (EPCs) are present in circulation and contribute to vasculogenesis in adults. The aim of the present study was to determine the number of circulating EPCs in patients with optic neuritis (ON).Materials and Methods:Fifty patients with ON were diagnosed by expert neurologist and optometrist at the Feiz Hospital, Isfahan, Iran (2012–2013). Blood samples were collected from ON patients in the first attack. The number of EPCs was measured by flow cytometry through the assessment of CD34+ and CD309+ in patients and healthy individuals.Results:With using flow cytometry, CD34+ and CD309+ cells detected in peripheral blood cells of patients (n = 50) with ON, and healthy individuals (n = 30). Patients with ON had (mean = 66.71 ± 17.82) CD34+ and CD309+ cells compared with healthy controls (mean = 28.72 ± 22.46). In addition, there was no significant difference in CD309+ cells in both groups.Conclusion:This study showed elevated CD34+ and CD309+ cells in the early stage of the disease. Regarded to EPC increment in neural repair, it expected the EPC level be increased in these patients, but no detectable differences were observed among both markers in healthy and patient with first attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.