BackgroundBioinformatic tools for the enrichment of ‘omics’ datasets facilitate interpretation and understanding of data. To date few are suitable for metabolomics datasets. The main objective of this work is to give a critical overview, for the first time, of the performance of these tools. To that aim, datasets from metabolomic repositories were selected and enriched data were created. Both types of data were analysed with these tools and outputs were thoroughly examined.ResultsAn exploratory multivariate analysis of the most used tools for the enrichment of metabolite sets, based on a non-metric multidimensional scaling (NMDS) of Jaccard’s distances, was performed and mirrored their diversity. Codes (identifiers) of the metabolites of the datasets were searched in different metabolite databases (HMDB, KEGG, PubChem, ChEBI, BioCyc/HumanCyc, LipidMAPS, ChemSpider, METLIN and Recon2). The databases that presented more identifiers of the metabolites of the dataset were PubChem, followed by METLIN and ChEBI. However, these databases had duplicated entries and might present false positives. The performance of over-representation analysis (ORA) tools, including BioCyc/HumanCyc, ConsensusPathDB, IMPaLA, MBRole, MetaboAnalyst, Metabox, MetExplore, MPEA, PathVisio and Reactome and the mapping tool KEGGREST, was examined. Results were mostly consistent among tools and between real and enriched data despite the variability of the tools. Nevertheless, a few controversial results such as differences in the total number of metabolites were also found. Disease-based enrichment analyses were also assessed, but they were not found to be accurate probably due to the fact that metabolite disease sets are not up-to-date and the difficulty of predicting diseases from a list of metabolites.ConclusionsWe have extensively reviewed the state-of-the-art of the available range of tools for metabolomic datasets, the completeness of metabolite databases, the performance of ORA methods and disease-based analyses. Despite the variability of the tools, they provided consistent results independent of their analytic approach. However, more work on the completeness of metabolite and pathway databases is required, which strongly affects the accuracy of enrichment analyses. Improvements will be translated into more accurate and global insights of the metabolome.Electronic supplementary materialThe online version of this article (10.1186/s12859-017-2006-0) contains supplementary material, which is available to authorized users.
Metabolomic studies aimed to dissect the connection between the development of type 2 diabetes and obesity are still scarce. In the present study, fasting serum from sixty-four adult individuals classified into four sex-matched groups by their BMI [non-obese versus morbid obese] and the increased risk of developing diabetes [prediabetic insulin resistant state versus non-prediabetic non-insulin resistant] was analyzed by LC- and FIA-ESI-MS/MS-driven metabolomic approaches. Altered levels of [lyso]glycerophospholipids was the most specific metabolic trait associated to morbid obesity, particularly lysophosphatidylcholines acylated with margaric, oleic and linoleic acids [lysoPC C17:0: R=-0.56, p=0.0003; lysoPC C18:1: R=-0.61, p=0.0001; lysoPC C18:2 R=-0.64, p<0.0001]. Several amino acids were biomarkers of risk of diabetes onset associated to obesity. For instance, glutamate significantly associated with fasting insulin [R=0.5, p=0.0019] and HOMA-IR [R=0.46, p=0.0072], while glycine showed negative associations [fasting insulin: R=-0.51, p=0.0017; HOMA-IR: R=-0.49, p=0.0033], and the branched chain amino acid valine associated to prediabetes and insulin resistance in a BMI-independent manner [fasting insulin: R=0.37, p=0.0479; HOMA-IR: R=0.37, p=0.0468]. Minority sphingolipids including specific [dihydro]ceramides and sphingomyelins also associated with the prediabetic insulin resistant state, hence deserving attention as potential targets for early diagnosis or therapeutic intervention.
Gut microbiota has recently been proposed as a crucial environmental factor in the development of metabolic diseases such as obesity and type 2 diabetes, mainly due to its contribution in the modulation of several processes including host energy metabolism, gut epithelial permeability, gut peptide hormone secretion, and host inflammatory state. Since the symbiotic interaction between the gut microbiota and the host is essentially reflected in specific metabolic signatures, much expectation is placed on the application of metabolomic approaches to unveil the key mechanisms linking the gut microbiota composition and activity with disease development. The present review aims to summarize the gut microbial–host co-metabolites identified so far by targeted and untargeted metabolomic studies in humans, in association with impaired glucose homeostasis and/or obesity. An alteration of the co-metabolism of bile acids, branched fatty acids, choline, vitamins (i.e., niacin), purines, and phenolic compounds has been associated so far with the obese or diabese phenotype, in respect to healthy controls. Furthermore, anti-diabetic treatments such as metformin and sulfonylurea have been observed to modulate the gut microbiota or at least their metabolic profiles, thereby potentially affecting insulin resistance through indirect mechanisms still unknown. Despite the scarcity of the metabolomic studies currently available on the microbial–host crosstalk, the data-driven results largely confirmed findings independently obtained from in vitro and animal model studies, putting forward the mechanisms underlying the implication of a dysfunctional gut microbiota in the development of metabolic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.