Herbal medicine use has grown considerably worldwide among pregnant women, and is particularly widespread in sub-Saharan Africa. However, herbal medicines used across sub-Saharan Africa are associated with important research gaps and a lack of regulatory framework. This is particularly problematic, as herbal medicine use during pregnancy raises several concerns attributed to the herbal ingredient itself, conventional drug-herbal medicine interactions, and contamination or adulteration of herbal remedies. Moreover, several local herbal remedies used by sub-Saharan African pregnant women have never been botanically identified. In this review, an overview of the practice of herbal medicine, including the regulations, challenges and overall safety, is provided. Then, we discuss the prevalence of herbal medicine use during pregnancy across different sub-Saharan African countries, as well as the indications, adverse outcomes, and effectiveness of the most commonly used herbal medicines during pregnancy in that region.
This study aimed at exploring the proteomic profile of PBMCs to predict treatment response in pulmonary tuberculosis (PTB). This was a pilot study conducted among 8 adult patients from Zanzibar, Tanzania with confirmed PTB. Blood samples were collected at baseline, at 2 months of treatment, and at the end of treatment at 6 months. Proteins were extracted from PBMCs and analyzed using LC-MS/MS based label free quantitative proteomics. Overall, 3,530 proteins were quantified across the samples, and 12 differentially expressed proteins were identified at both 2 months of treatment and at treatment completion, which were involved in cellular and metabolic processes, as well as binding and catalytic activity. Seven were downregulated proteins (HSPA1B/HSPA1A, HSPH1, HSP90AA1, lipopolysaccharide-binding protein, complement component 9, calcyclin-binding protein, and protein transport protein Sec31A), and 5 proteins were upregulated (SEC14 domain and spectrin repeat-containing protein 1, leucine-rich repeat-containing 8 VRAC subunit D, homogentisate 1,2-dioxygenase, NEDD8-activating enzyme E1 regulatory subunit, and N-acetylserotonin O-methyltransferase-like protein). The results showed that proteome analysis of PBMCs can be used as a novel technique to identify protein abundance change with anti-tuberculosis treatment. The novel proteins elucidated in this work may provide new insights for understanding PTB pathogenesis, treatment, and prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.