A dopamine-imprinted polymer (MIP) was prepared in aqueous methanol solution at 60 o C by free-radical cross-linking polymerization of methacrylic acid in the presence of ethylene glycol dimethacrylate as the cross-linker and dopamine hydrochloride as the template molecule. Its ability to isolate dopamine was evaluated as the basis of a solid phase extraction procedure and compared with that of a non-imprinted polymer (NIP). The binding of dopamine was 84.1% and 29.1% for MIP and NIP, respectively. Various reported post-polymerization treatments to reduce template bleeding were examined. In our case the lowest bleeding was achieved after applying a combined procedure: continuous extraction in a Soxhlet apparatus (CE), followed by microwaveassisted extraction (ME) to a level of 0.061 μg/mL. A simplified model of the templatemonomer complexes allowed rationalization of monomer choice based on the heats of complex formation at a PM3 level of theory.
Nanoparticles (NPs) are atomic clusters of crystalline or amorphous structure that possess unique physical and chemical properties associated with a size range of between 1 and 100 nm. Their nano-sized dimensions, which are in the same range as those of vital biomolecules, such as antibodies, membrane receptors, nucleic acids, and proteins, allow them to interact with different structures within living organisms. Because of these features, numerous nanoparticles are used in medicine as delivery agents for biomolecules. However, off-target drug delivery can cause serious side effects to normal tissues and organs. Considering this issue, it is essential to develop bioengineering strategies to significantly reduce systemic toxicity and improve therapeutic effect. In contrast to passive delivery, nanosystems enable to obtain enhanced therapeutic efficacy, decrease the possibility of drug resistance, and reduce side effects of “conventional” therapy in cancers. The present review provides an overview of the most recent (mostly last 3 years) achievements related to different biomolecules used to enable targeting capabilities of highly diverse nanoparticles. These include monoclonal antibodies, receptor-specific peptides or proteins, deoxyribonucleic acids, ribonucleic acids, [DNA/RNA] aptamers, and small molecules such as folates, and even vitamins or carbohydrates.
This work presents a very new look at folate targeting and is focused on synthesizing and assessing the biological activity of folic acid-targeted drug delivery materials based on β-cyclodextrin. Both folic acid and β-cyclodextrin have been covalently conjugated to branched polyethylenimine as the polymeric vector. Host-guest inclusion of folic acid into a β-cyclodextrin cavity, demonstrated by means of the spectroscopic methods (2-D NMR, IR, UV-Vis), is found to be of crucial importance for biological activity of nanotherapeutics. This paper describes the very first example of the versatile synthetic approach to create the polymeric biosystems, where folic acid activity is not limited by the inclusion phenomenon. Cytotoxicity of the obtained polymeric materials against Lewis lung carcinoma cells is determined by neutral red uptake assay. Folate receptor-binding studies reveal that the developed synthetic approach enables full exploitation of the potential of folic acid as a targeting ligand.
The development of carbon-encapsulated iron nanoparticles (CEINS) is of considerable interest in many areas of cancer nanotechnology, ranging from basic tumor biology to early detection and treatment of cancer. To meet these challenges, the present study was undertaken to determine the magnetic and relaxometric performance of CEINS used as a new contrast agent for magnetic resonance imaging (MRI) in preclinical phantom models. CEIN samples were synthesized using a carbon arc discharge route, and the as-synthesized nanoparticles were purified and functionalized with surface acidic groups. The presence of various Fe-bearing metallic phases reflecting the net magnetic properties of CEINS was characterized by powder X-ray diffraction (XRD), thermogravimetry (TGA), and vibrating sample magnetometry. The morphological and surface chemistry features were characterized by electron microscopy (transmission electron microscopy [TEM] and scanning electron microscopy [SEM]), Raman spectroscopy, and Fourier transform-infrared (FT-IR) spectroscopy. The textural properties of CEINS, including porosity, surface total charge density, and zeta potentials, were also measured. The as-synthesized different CEIN samples were finally examined as a potent MRI contrast drug candidate. Magnetic resonance relaxation measurements were performed in bovine gelatin-based phantom models by using a 1.5-T MRI scanner equipped with a standard radiofrequency "birdcage" type head coil. To obtain data, T1-and T2-weighted MR images were acquired using the inversion recovery spin echo (SE) and the SE protocol with multiple time of echo (TE), respectively. Chemical characterization showed similarity in morphology and textural properties between assynthesized CEINS, purified CEINS, and CEINS functionalized with acidic groups. The as-synthesized CEINS had significantly higher Fe content and higher saturation magnetization. The analysis of the
An efficient molecularly imprinted solid-phase extraction protocol was developed for the separation of dopamine (DA) from human urine. After successful validation of the analytical method using high-performance liquid chromatography coupled with fluorescence detection, a new strategy for the selective determination of DA in the presence of norepinephrine and epinephrine in human urine was presented. In the proposed protocol, the LODs and quantification for DA were 166 ± 36 and 500 ± 110 nmol/L, respectively, and the total recoveries of DA in the range of 1-15 μmol/L varied between 98.3 and 101.1%. DA was detected in the real urine samples at the level of 47-167 μg/L (0.250-0.895 μmol/L). The superiority of the novel analytical strategy was shown by comparison with the results obtained for a commercially available imprinted sorbent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.