An efficient molecularly imprinted solid-phase extraction protocol was developed for the separation of dopamine (DA) from human urine. After successful validation of the analytical method using high-performance liquid chromatography coupled with fluorescence detection, a new strategy for the selective determination of DA in the presence of norepinephrine and epinephrine in human urine was presented. In the proposed protocol, the LODs and quantification for DA were 166 ± 36 and 500 ± 110 nmol/L, respectively, and the total recoveries of DA in the range of 1-15 μmol/L varied between 98.3 and 101.1%. DA was detected in the real urine samples at the level of 47-167 μg/L (0.250-0.895 μmol/L). The superiority of the novel analytical strategy was shown by comparison with the results obtained for a commercially available imprinted sorbent.
This study presents a validated strategy for the determination of tryptamine in the presence of its competitors, which involves the molecularly imprinted solid-phase extraction combined with high-performance liquid chromatography coupled with fluorimetric detection. Tryptamine-imprinted microscale sorbent was produced from 4-vinylbenzoic acid and ethylene glycol dimethacrylate in methanol by precipitation polymerization, and its imprinting factor was equal to 15.4 in static experiments or 18.6 in dynamic binding experiments. The method for tryptamine determination in the presence of serotonin and l-tryptophan was validated using a complex matrix of bovine serum albumin yielding the recoveries of tryptamine that ranged between 98.7 and 107.0%. Very low limits of detection and limits of quantification for tryptamine (19.9 and 60.3 nmol/L, respectively) allow the quantification of tryptamine in human cerebrospinal fluid in the presence of tryptophan and serotonin.
A bulk polymerization method was used to easily and efficiently prepare homo-veratric acid (3,4-dimethoxyphenylacetic acid)-imprinted polymers from eight basic monomers: 2-vinylpyridine, 4-vinylpyridine, 1-vinylimidazole, N-allylaniline, N-allyl-piperazine, allylurea, allylthiourea, and allylamine, in the presence of homoveratric acid as a template in N,N-dimethylformamide as a porogen. The imprinted polymer prepared from allylamine had the highest affinity to the template, showing an imprinting factor of 3.43, and allylamine polymers MIP8/NIP8 were selected for further studies. Their binding properties were analyzed using the Scatchard method. The results showed that the imprinted polymers have two classes of heterogeneous binding sites characterized by two pairs of Kd, Bmax values: Kd(1) = 0.060 μmol/mL, Bmax(1) = 0.093 μmol/mg for the higher affinity binding sites, and Kd(2) = 0.455 μmol/mL, Bmax(2) = 0.248 μmol/mg for the lower affinity binding sites. Non-imprinted polymer has only one class of binding site, with Kd = 0.417 μmol/mL and Bmax = 0.184 μmol/mg. A computational analysis of the energies of the prepolymerization complexes was in agreement with the experimental results. It showed that the selective binding interactions arose from cooperative three point interactions between the carboxylic acid and the two methoxy groups in the template and amino groups in the polymer cavities. Those results were confirmed by the recognition studies performed with the set of structurally related compounds. Allylamine polymer MIP8 had no affinity towards biogenic amines. The obtained imprinted polymer could be used for selective separation of homoveratric acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.