Abstract-The width of an interconnect line affects the total power consumed by a circuit. The effect of wire sizing on the power characteristics of an inductive interconnect line is presented in this paper. The matching condition between the driver and the load affects the power consumption since the short-circuit power dissipation may decrease and the dynamic power will increase with wider lines. A tradeoff, therefore, exists between short-circuit and dynamic power in inductive interconnects. The short-circuit power increases with wider linewidths only if the line is underdriven. The power characteristics of inductive interconnects therefore may have a great influence on wire sizing optimization techniques. An analytic solution of the transition time of a signal propagating along an inductive interconnect with an error of less than 15% is presented. The solution is useful in wire sizing synthesis techniques to decrease the overall power dissipation. The optimum linewidth that minimizes the total transient power dissipation is determined. An analytic solution for the optimum width with an error of less than 6% is presented. For a specific set of line parameters and resistivities, a reduction in power approaching 80% is achieved as compared to the minimum wire width. Considering the driver size in the design process, the optimum wire and driver size that minimizes the total transient power is also determined.Index Terms-Characteristic impedance, dynamic power, inductive interconnect, short-circuit power, transient power dissipation, underdamped systems.
Exponentially tapered interconnect can reduce the dynamic power dissipation of clock distribution networks. A criterion for sizing H-tree clock networks is proposed. The technique reduces the power dissipated by an example clock network by up to 12% while preserving the signal transition times and propagation delays. Furthermore, the inductive behavior of the interconnects is reduced, decreasing the inductive noise. Exponentially tapered interconnects reduce by approximately 20% the difference between the overshoots in the signal at the input of a tree as compared to a uniform tree with the same area overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.