The Internet of Things (IoT) concept has emerged to improve people’s lives by providing a wide range of smart and connected devices and applications in several domains, such as green IoT-based agriculture, smart farming, smart homes, smart transportation, smart health, smart grid, smart cities, and smart environment. However, IoT devices are at risk of cyber attacks. The use of deep learning techniques has been adequately adopted by researchers as a solution in securing the IoT environment. Deep learning has also successfully been implemented in various fields, proving its superiority in tackling intrusion detection attacks. Due to the limitation of signature-based detection for unknown attacks, the anomaly-based Intrusion Detection System (IDS) gains advantages to detect zero-day attacks. In this paper, a systematic literature review (SLR) is presented to analyze the existing published literature regarding anomaly-based intrusion detection, using deep learning techniques in securing IoT environments. Data from the published studies were retrieved from five databases (IEEE Xplore, Scopus, Web of Science, Science Direct, and MDPI). Out of 2116 identified records, 26 relevant studies were selected to answer the research questions. This review has explored seven deep learning techniques practiced in IoT security, and the results showed their effectiveness in dealing with security challenges in the IoT ecosystem. It is also found that supervised deep learning techniques offer better performance, compared to unsupervised and semi-supervised learning. This analysis provides an insight into how the use of data types and learning methods will affect the performance of deep learning techniques for further contribution to enhancing a novel model for anomaly intrusion detection and prediction.
According to the principle of similar property, structurally similar compounds exhibit very similar properties and, also, similar biological activities. Many researchers have applied this principle to discovering novel drugs, which has led to the emergence of the chemical structure-based activity prediction. Using this technology, it becomes easier to predict the activities of unknown compounds (target) by comparing the unknown target compounds with a group of already known chemical compounds. Thereafter, the researcher assigns the activities of the similar and known compounds to the target compounds. Various Machine Learning (ML) techniques have been used for predicting the activity of the compounds. In this study, the researchers have introduced a novel predictive system, i.e., MaramalNet, which is a convolutional neural network that enables the prediction of molecular bioactivities using a different molecular matrix representation. MaramalNet is a deep learning system which also incorporates the substructure information with regards to the molecule for predicting its activity. The researchers have investigated this novel convolutional network for determining its accuracy during the prediction of the activities for the unknown compounds. This approach was applied to a popular dataset and the performance of this system was compared with three other classical ML algorithms. All experiments indicated that MaramalNet was able to provide an interesting prediction rate (where the highly diverse dataset showed 88.01% accuracy, while a low diversity dataset showed 99% accuracy). Also, MaramalNet was seen to be very effective for the homogeneous datasets but showed a lower performance in the case of the structurally heterogeneous datasets.
Virtual screening (VS) is a computational practice applied in drug discovery research. VS is popularly applied in a computer-based search for new lead molecules based on molecular similarity searching. In chemical databases similarity searching is used to identify molecules that have similarities to a user-defined reference structure and is evaluated by quantitative measures of intermolecular structural similarity. Among existing approaches, 2D fingerprints are widely used. The similarity of a reference structure and a database structure is measured by the computation of association coefficients. In most classical similarity approaches, it is assumed that the molecular features in both biological and non-biologically-related activity carry the same weight. However, based on the chemical structure, it has been found that some distinguishable features are more important than others. Hence, this difference should be taken consideration by placing more weight on each important fragment. The main aim of this research is to enhance the performance of similarity searching by using multiple descriptors. In this paper, a deep learning method known as deep belief networks (DBN) has been used to reweight the molecule features. Several descriptors have been used for the MDL Drug Data Report (MDDR) dataset each of which represents different important features. The proposed method has been implemented with each descriptor individually to select the important features based on a new weight, with a lower error rate, and merging together all new features from all descriptors to produce a new descriptor for similarity searching. Based on the extensive experiments conducted, the results show that the proposed method outperformed several existing benchmark similarity methods, including Bayesian inference networks (BIN), the Tanimoto similarity method (TAN), adapted similarity measure of text processing (ASMTP) and the quantum-based similarity method (SQB). The results of this proposed multi-descriptor-based on Stack of deep belief networks method (SDBN) demonstrated a higher accuracy compared to existing methods on structurally heterogeneous datasets.
Breast cancer is one of the precarious conditions that affect women, and a substantive cure has not yet been discovered for it. With the advent of Artificial intelligence (AI), recently, deep learning techniques have been used effectively in breast cancer detection, facilitating early diagnosis and therefore increasing the chances of patients’ survival. Compared to classical machine learning techniques, deep learning requires less human intervention for similar feature extraction. This study presents a systematic literature review on the deep learning-based methods for breast cancer detection that can guide practitioners and researchers in understanding the challenges and new trends in the field. Particularly, different deep learning-based methods for breast cancer detection are investigated, focusing on the genomics and histopathological imaging data. The study specifically adopts the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), which offer a detailed analysis and synthesis of the published articles. Several studies were searched and gathered, and after the eligibility screening and quality evaluation, 98 articles were identified. The results of the review indicated that the Convolutional Neural Network (CNN) is the most accurate and extensively used model for breast cancer detection, and the accuracy metrics are the most popular method used for performance evaluation. Moreover, datasets utilized for breast cancer detection and the evaluation metrics are also studied. Finally, the challenges and future research direction in breast cancer detection based on deep learning models are also investigated to help researchers and practitioners acquire in-depth knowledge of and insight into the area.
Financial fraud, considered as deceptive tactics for gaining financial benefits, has recently become a widespread menace in companies and organizations. Conventional techniques such as manual verifications and inspections are imprecise, costly, and time consuming for identifying such fraudulent activities. With the advent of artificial intelligence, machine-learning-based approaches can be used intelligently to detect fraudulent transactions by analyzing a large number of financial data. Therefore, this paper attempts to present a systematic literature review (SLR) that systematically reviews and synthesizes the existing literature on machine learning (ML)-based fraud detection. Particularly, the review employed the Kitchenham approach, which uses well-defined protocols to extract and synthesize the relevant articles; it then report the obtained results. Based on the specified search strategies from popular electronic database libraries, several studies have been gathered. After inclusion/exclusion criteria, 93 articles were chosen, synthesized, and analyzed. The review summarizes popular ML techniques used for fraud detection, the most popular fraud type, and evaluation metrics. The reviewed articles showed that support vector machine (SVM) and artificial neural network (ANN) are popular ML algorithms used for fraud detection, and credit card fraud is the most popular fraud type addressed using ML techniques. The paper finally presents main issues, gaps, and limitations in financial fraud detection areas and suggests possible areas for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.