The gravel-sand transition (GST) is commonly observed along rivers. It is characterized by an abrupt reduction in median grain size, from gravel- to sand-size sediment, and by a shift in sand transport mode from wash load–dominated to suspended bed material load. We documented changes in channel stability, suspended sediment concentration, flux, and grain size across the GST of the Karnali River, Nepal. Upstream of the GST, gravel-bed channels are stable over hundred- to thousand-year time scales. Downstream, floodplain sediment is reworked by lateral bank erosion, particularly during monsoon discharges. Suspended sediment concentration, grain size, and flux reveal counterintuitive increases downstream of the GST. The results demonstrate a dramatic change in channel dynamics across the GST, from relatively fixed, steep gravel-bed rivers with infrequent avulsion to lower-gradient, relatively mobile sand-bed channels. The increase in sediment concentration and near-bed suspended grain size may be caused by enhanced channel mobility, which facilitates exchange between bed and bank material. These results bring new constraints on channel stability at mountain fronts and indicate that temporally and spatially limited sediment flux measurements downstream of GSTs are more indicative of flow stage and floodplain recycling than of continental-scale sediment flux and denudation rate estimates.
A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence.
<p>The gravel-sand transition is observed along most rivers. It is characterized by an abrupt reduction in median bed grain size, from gravel- to sand-size sediment, and by a shift in sand transport mode from wash load-dominated to suspended bed material load. We document changes in channel stability, suspended sediment concentrations, flux and grain size across the gravel-sand transition of the Karnali River, Nepal. Upstream of the gravel-sand transition, gravel-bed channels are stable over hundred to thousand-year timescales. Downstream, floodplain sediment is reworked by lateral bank erosion, particularly during monsoon discharges. Suspended sediment concentration, grain size and flux reveal counterintuitive increases downstream of the gravel-sand transition. The results demonstrate a dramatic change in channel dynamics across the transition, from relatively fixed, steep gravel-bed rivers with infrequent avulsion to lower gradient, relatively mobile sand-bed channels. The increase in sediment concentrations and near-bed suspended grain size may be caused by enhanced channel mobility, which facilitates exchange between bed and bank materials.&#160;&#160; These results bring new constraints on channel stability at mountain fronts, and indicate that temporally and spatially limited sediment flux measurements downstream of gravel-sand transitions are more indicative of flow stage and floodplain recycling than of continental-scale sediment flux and denudation rate estimates.</p>
Flood hazard maps used to inform and build resilience in remote communities in the Terai region of southern Nepal are based on outdated and static digital elevation models (DEMs), which do not reflect dynamic river configuration or hydrology. Episodic changes in river course, sediment dynamics, and the distribution of flow down large bifurcation nodes can modify the extent of flooding in this region, but these processes are rarely considered in flood hazard assessment. Here, we develop a 2D hydrodynamic flood model of the Karnali River in the Terai region of west Nepal. A number of scenarios are tested examining different DEMs, variable bed elevations to simulate bed aggradation and incision, and updating bed elevations at a large bifurcation node to reflect field observations. By changing the age of the DEM used in the model, a 9.5% increase in inundation extent was observed for a 20-year flood discharge. Reducing horizontal DEM resolution alone resulted in a <1% change. Uniformly varying the bed elevation led to a 36% change in inundation extent. Finally, changes in bed elevation at the main bifurcation to reflect observed conditions resulted in the diversion of the majority of flow into the west branch, consistent with measured discharge ratios between the two branches, and a 32% change in inundation extent. Although the total flood inundation area was reduced (À4%), there was increased inundation along the west bank. Our results suggest that regular field measurements of bed elevation and updated DEMs following large sediment-generating events, and at topographically sensitive areas such as large river bifurcations, could help improve model inputs in future flood prediction models. This is particularly important following flood events carrying large sediment loads out of mountainous regions that could promote bed aggradation and channel switching across densely populated alluvial river systems and floodplains further downstream.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.