Purpose Bovine respiratory disease is a worldwide health concern in the feedlot cattle causing morbidity and mortality in young with major economic losses to the producer. Programs of vaccination are integral parts of preventive health programs. We aim to prepare and evaluate lyophilized combined inactivated viruses (bovine viral diarrhea virus [BVDV] genotypes 1 and 2, bovine herpes virus type 1.1 [BoHV-1.1], bovine parainfluenza-3 virus [BPI-3V], and bovine respiratory syncytial virus [BRSV]) vaccine using saponin as a solvent and adjuvant in cattle. Materials and Methods Lyophilized Pneumo-5 vaccine was formulated to include the inactivated BVDV genotypes 1 and 2, BoHV-1.1, BPI-3V, and BRSV. The saponin solution was used as an adjuvant and solvent. The prepared vaccines were adjusted to contain 1- and 1.5-mg saponin/dose. It was evaluated for its sterility, safety, and potency in mice and calves. The antibody titers in vaccinated calves were measured by virus neutralization test and enzyme-linked immunosorbent assay (ELISA). Results The Pneumo-5 vaccine was found to be free from any contaminants and safe in mice. Meanwhile, the vaccine showed safety in calves which inoculated intramuscularly with the double dose of the vaccines. The overall immune response reached its peak in the 2nd-month post-vaccination. The vaccine contained saponin 1.5 mg/dose reached its antibodies peak in the 4th-week post-vaccination. All groups of vaccinated calves with both concentrations of the saponin did not show statistical significance in antibody titers measured by serum neutralization test and/or ELISA. Conclusion The prepared vaccine, namely Pneumo-5, and adjuvanted with either 1 or 1.5 mg/dose saponin was proved safe and potent for effectual protection of calves against BVDV genotypes 1 and 2, BoHV-1.1, BPI-3V, and BRSV.
Purpose The key objective of this study was to formulate a local combined inactivated gel adjuvanted vaccine containing bovine viral diarrhea virus (BVDV)-1, BVDV-2 viruses and Clostridium perfringens type A toxoid. The study evaluated its ability to enhance protective active immune response in camels’ calves against these infectious pathogens under field conditions. Materials and Methods The local BVDV cytopathic strains and a local strain of toxigenic C. perfringens type A were used in vaccines formulation. Vaccines A and B were monovalent vaccines against C. perfringens and both strains of BVDVs, respectively. While the vaccine C was the combined vaccine used against the three agents. All vaccines were adjuvanted with Montanide gel. Sterility, safety, and potency tests were applied on the formulated vaccines. Virus neutralization and toxin anti-toxin neutralization tests were used to evaluate the immune responses. Results Both monovalent (vaccine A) and combined vaccines (vaccine C) showed a protective level (4.5 and 3 IU/mL, respectively) against C. perfringens from the 2nd-week post-vaccination. The titer declined to 3 and 2 IU/mL, respectively at the 5th-month post-vaccination. The titer against BVDV, the monovalent vaccine (vaccine B) reached the beak (1.95 IU/mL) at the 1st-month post-vaccination and lasted till 6th-month post-vaccination (0.92 and 0.94 IU/mL) for BVDV-1a and BVDV-2, respectively. Conclusion Vaccination of camels with the combined vaccine adjuvanted by Montanide gel containing C. perfringens type A toxoid and BVDV strains with 6-month intervals is recommended to protect camels safely and efficiently against such infections in the field.
The bovine virus diarrhea virus (BVDV) causes reproductive, enteric, and respiratory diseases. Vaccination is essential in increasing herd resistance to BVDV spread. The selection of an adjuvant is an important factor in the success of the vaccination process. Monolaurin or glycerol monolaurate is a safe compound with an immunomodulatory effect. This study aimed to evaluate the efficacy of monolaurin as a novel adjuvant. This was examined through the preparation of an inactivated BVDV (NADL strain) vaccine adjuvanted with different concentrations of monolaurin and compared with the registered available locally prepared polyvalent vaccine (Pneumo-4) containing BVD (NADL strain), BoHV-1 (Abou Hammad strain), BPI3 (strain 45), and BRSV (strain 375L), and adjuvanted with aluminum hydroxide gel. The inactivated BVDV vaccine was prepared using three concentrations, 0.5%, 1%, and 2%, from monolaurin as adjuvants. A potency test was performed on five groups of animals. The first group, which did not receive vaccination, served as a control group while three other groups were vaccinated using the prepared vaccines. The fifth group received the Pneumo-4 vaccine. Vaccination response was monitored by measuring viral neutralizing antibodies using enzyme-linked immunosorbent assay (ELISA). It was found that the BVD inactivated vaccine with 1% and 2% monolaurin elicited higher neutralizing antibodies that have longer-lasting effects (nine months) with no reaction at the injection site in comparison to the commercial vaccine adjuvanted by aluminum hydroxide gel.
Consuming time and effort to prepare hyperimmune globulins using Freund’s adjuvant is a sophisticated and harsh technique. In this work, a novel, safe, and rabid method was proposed using monolaurin as an immune-stimulating agent in hyperimmune globulins production against Bovine coronavirus (BCoV). The mentioned virus was used as a surrogate to family Betacoronavirus. Bovine coronavirus (Mabus strain) with titer log10 5.8 tissue culture infective dose infectivity (TCID50)/ml was used in this experiment. The inactivation of the virus was done using 1% ascorbic acid for 24h. Monolaurin emulsion (10% w/v) of was prepared by sonication using tween 20 and water. The inactivated bovine coronavirus was added to the emulsion by 20% of the final volume. The immunoglobulins were prepared by inoculating the inactivated virus with the adjuvant in rabbits and evaluated on the Madin-Darby bovine kidney (MDBK) cell line by virus neutralization test (VNT). The effect of the adjuvant was assessed by histopathological examination of vital organs such as the kidney and liver. The antibody titer against the BCoV was reached its peak, log2 1024 TCID50/ml, at the 3rd-week post-inoculation in the rabbits. The level of the globulin reached a high level and its peak (14.3g/dL) at the end of the experiment. No abnormalities were seen in the livers and kidneys of the negative control group of rabbits. Monolaurin showed a new level of safety and efficacy when used as an adjuvant during the preparation of the immunoglobulins against BCoV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.