Angiogenesis is a multistep process and various molecules are involved in regulating it. Extracellular vesicles are cellderived particles, secreted from several types of cells and are known to mediate cell-to-cell communication. These vesicles contain different bio-molecules including nucleic acids, proteins, and lipids, which are transported between cells and regulate physiological and pathological conditions in the recipient cell. Exosomes, 30-150 nm extracellular vesicles, and their key roles in tumorigenesis via promoting angiogenesis are of great recent interest. In solid tumors, the suitable blood supply is the hallmark of their progression, growth, and metastasis, so it can be supported by angiogenesis. Tumor cells abundantly release exosomes containing different kinds of biomolecules such as angiogenic molecules that contribute to inducing angiogenesis. These exosomes can be trafficked between tumor cells or between tumor cells and endothelial cells. The protein and nucleic acid cargo of tumor derived-exosomes can deliver to endothelial cells mostly by endocytosis, and then induce angiogenesis. Tumor derived-exosomes can be used as biomarker for cancer diagnosis. Targeting exosome-induced angiogenesis may serve as a promising tool for cancer therapy. Taken together, tumor derived-exosomes are the major contributors in tumor angiogenesis and a supposed target for antiangiogenic therapies. However, further scrutiny is essential to investigate the function of exosomes in tumor angiogenesis and clinical relevance of targeting exosomes for suppressing angiogenesis.
Background Many eukaryote cells produce membrane-enclosed extracellular vesicles (EVs) to establish cell-to-cell communication. Plant-derived EVs (P-EVs) contain proteins, RNAs, lipids, and other metabolites that can be isolated from the juice, the flesh, and roots of many species. Methods In the present review study, we studied numerous articles over the past two decades published on the role of P-EVs in plant physiology as well as on the application of these vesicles in different diseases. Results Different types of EVs have been identified in plants that have multiple functions including reorganization of cell structure, development, facilitating crosstalk between plants and fungi, plant immunity, defense against pathogens. Purified from several edible species, these EVs are more biocompatible, biodegradable, and extremely available from many plants, making them useful for cell-free therapy. Emerging evidence of clinical and preclinical studies suggest that P-EVs have numerous benefits over conventional synthetic carriers, opening novel frontiers for the novel drug-delivery system. Exciting new opportunities, including designing drug-loaded P-EVs to improve the drug-delivery systems, are already being examined, however clinical translation of P-EVs-based therapies faces challenges. Conclusion P-EVs hold great promise for clinical application in the treatment of different diseases. In addition, despite enthusiastic results, further scrutiny should focus on unravelling the detailed mechanism behind P-EVs biogenesis and trafficking as well as their therapeutic applications.
Athrosclerosis is conceived as a chronic inflammatory status affecting cells from vascular walls. Different mechanisms and pathological features are evident at the onset of atherosclerotic changes via the engaging different cells from the vascular wall and circulatory cells. Attempts are currently focused on the detection of cell compensatory mechanisms against atherosclerotic changes to restore cell function and/or postpone severe vasculitis. Autophagy is an intracellular self-digesting process commonly protrudes exhausted organelles and injured cytoplasmic constituents via double-lipid bilayer membrane vesicles out the target cells. Recent investigations point to the critical and defensive role of autophagy in the vascular cells behavioral function such as endothelial cells and smooth muscle cells against different insults. Autophagy response and related effectors could be modulated in the favor to restore cell function and reduce pro-inflammatory status under pathological conditions. In this review, the recent findings were collected regarding the role of autophagy during atherosclerotic changes. We aimed to answer the question of how autophagy stimulation and/or inhibition could provide a promising effect on developing a sophisticated treatment for AS.
Eukaryotic cells produce extracellular vesicles (EVs) mediating intercellular communication. These vesicles encompass many bio-molecules such as proteins, nucleic acids, and lipids that are transported between cells and regulate pathophysiological actions in the recipient cell. Exosomes originate from multivesicular bodies inside cells and microvesicles shed from the plasma membrane and participate in various pathological conditions. Retroviruses such as Human Immunodeficiency Virus -type 1 (HIV-1) and Human T-cell leukemia virus (HTLV)-1 engage exosomes for spreading and infection. Exosomes from virus-infected cells transfer viral components such as miRNAs and proteins that promote infection and inflammation. Additionally, these exosomes deliver virus receptors to target cells that make them susceptible to virus entry. HIV-1 infected cells release exosomes that contribute to the pathogenesis including neurological disorders and malignancy. Exosomes can also potentially carry out as a modern approach for the development of HIV-1 and HTLV-1 vaccines. Furthermore, as exosomes are present in most biological fluids, they hold the supreme capacity for clinical usage in the early diagnosis and prognosis of viral infection and associated diseases. Our current knowledge of exosomes' role from virus-infected cells may provide an avenue for efficient retroviruses associated with disease prevention. However, the exact mechanism involved in retroviruses infection/ inflammation remains elusive and related exosomes research will shed light on the mechanisms of pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.