Abstract:A novel method for a day-ahead optimal operation of a hybrid microgrid system including fuel cells, photovoltaic arrays, a microturbine, and battery energy storage in order to fulfill the required load demand is presented in this paper. In the proposed system, the microgrid has access to the main utility grid in order to exchange power when required. Available municipal waste is utilized to produce the hydrogen required for running the fuel cells, and natural gas will be used as the backup source. In the proposed method, an energy scheduling is introduced to optimize the generating unit power outputs for the next day, as well as the power flow with the main grid, in order to minimize the operational costs and produced greenhouse gases emissions. The nature of renewable energies and electric power consumption is both intermittent and unpredictable, and the uncertainty related to the PV array power generation and power consumption has been considered in the next-day energy scheduling. In order to model uncertainties, some scenarios are produced according to Monte Carlo (MC) simulations, and microgrid optimal energy scheduling is analyzed under the generated scenarios. In addition, various scenarios created by MC simulations are applied in order to solve unit commitment (UC) problems. The microgrid's day-ahead operation and emission costs are considered as the objective functions, and the particle swarm optimization algorithm is employed to solve the optimization problem. Overall, the proposed model is capable of minimizing the system costs, as well as the unfavorable influence of uncertainties on the microgrid's profit, by generating different scenarios.
An image processing technique called Local Binary Patterns (LBP) has been explored for its ability to generate feature vectors for dolphin vocalization classification. The LBP operator eliminates the need for contour tracing, denoising, and other prior processing. In an experimental study of classifying dolphin whistle types, the performance of the LBP operation was compared with that of the popular contour-based Time-Frequency Parameters (TFP) approach. The preliminary experimental results illustrate that the LBP method produces more consistent classifier accuracy of dolphin whistle calls even when the contour shapes are complex and populated with impulsive clicks and anthropogenic harmonics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.