This paper proposes a disturbance observer-based Sliding Mode Control (SMC) approach for the robust synchronization of uncertain delayed chaotic systems. This is done by, first, examining and analyzing the electronic behavior of the master and slave Sprott chaotic systems. Then, synthesizing a robust sliding mode control technique using a newly proposed sliding surface that encompasses the synchronization error between the master and slave. The external disturbances affecting the system were estimated using a disturbance observer. The proof of the semi-globally bounded synchronization between the master and slave was established using the Lyapunov stability theory. The efficiency of the proposed approach was first assessed using a simulation study, then, experimentally validated on a data security system. The obtained results confirmed the robust synchronization properties of the proposed approach in the presence of timedelays and external disturbances. The experimental validation also confirmed its ability to ensure the secure transfer of data. INDEX TERMS Sliding mode control; robust synchronization control; chaotic systems; disturbance observer; data security.
Summary
In this paper, a switching scheme is presented to reduce the capacitive digital‐to‐analog converter (DAC) switching energy, area, and the number of switches in successive approximation register (SAR) analog‐to‐digital converters (ADCs). In the proposed DAC switching method, after a few most significant bits (MSBs) decision, the sampled differential input signal is shifted into two special regions where the required DAC switching energy and area is less than the other regions. This technique can be utilized in most of the previously reported DAC switching schemes to further reduce the capacitive DAC switching energy and area. The conventional and two recently presented DAC switching techniques are utilized in the proposed SAR ADC to evaluate its usefulness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.