Quadrotors are Vertical Take-Off and Landing aerial vehicles with many potential applications ranging from mapping to supporting rescue operations. This paper aims to provide an overview on various works carried out on the quadrotor, from the perspective of control and dynamic modelling. Also in this paper, based on the information summarized from 160 researches available, different control targets and flight missions are analysed and classified, and according to it, a general flight mission map is introduced. In addition, history of advances in development of quadrotors and set-ups proposed when performing experimental researches on quadrotors is presented.
Tendon injuries are frequent, and surgical interventions toward their treatment might result in significant clinical complications. Pretendinous adhesion results in the disruption of the normal gliding mechanism of a damaged tendon, painful movements, and an increased chance of rerupture in the future. To alleviate postsurgical tendon-sheath adhesions, many investigations have been directed toward the development of repair approaches using electrospun nanofiber scaffolds. Such methods mainly take advantage of nanofibrous membranes (NFMs) as physical barriers to prevent or minimize adhesion of a repaired tendon to its surrounding sheath. In addition, these nanofibers can also locally deliver antiadhesion and anti-inflammatory agents to reduce the risk of tendon adhesion. This article reviews recent advances in the design, fabrication, and characterization of nanofibrous membranes developed to serve as (i) biomimetic tendon sheaths and (ii) physical barriers. Various features of the membranes are discussed to present insights for further development of repair methods suitable for clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.