Protein condensates are complex fluids that can change their material properties with time. However, an appropriate rheological description of these fluids remains missing. We characterize the time-dependent material properties of in vitro protein condensates using laser tweezer–based active and microbead-based passive rheology. For different proteins, the condensates behave at all ages as viscoelastic Maxwell fluids. Their viscosity strongly increases with age while their elastic modulus varies weakly. No significant differences in structure were seen by electron microscopy at early and late ages. We conclude that protein condensates can be soft glassy materials that we call Maxwell glasses with age-dependent material properties. We discuss possible advantages of glassy behavior for modulation of cellular biochemistry.
Living and engineered systems rely on the stable coexistence of two interspersed liquid phases. Yet, surface tension drives their complete separation. Here, we show that stable droplets of uniform and tunable size can be produced through arrested phase separation in an elastic matrix. Starting with a cross-linked, elastic polymer network swollen by a solvent mixture, we change the temperature or composition to drive demixing. Droplets nucleate and grow to a stable size that is tunable by the network cross-linking density, the cooling rate, and the composition of the solvent mixture. We discuss thermodynamic and mechanical constraints on the process. In particular, we show that the threshold for macroscopic phase separation is altered by the elasticity of the polymer network, and we highlight the role of correlations between nuclei positions in determining the droplet size and polydispersity. This phenomenon has potential applications ranging from colloid synthesis and structural color to phase separation in biological cells.
An increasing number of proteins with intrinsically disordered domains have been shown to phase separate in buffer to form liquid-like phases. These protein condensates serve as simple models for the investigation of the more complex membrane-less organelles in cells. To understand the function of such proteins in cells, the material properties of the condensates they form are important. However, these material properties are not well understood. Here, we develop a novel method based on optical traps to study the frequency-dependent rheology and the surface tension of PGL-3 condensates as a function of salt concentration. We find that PGL-3 droplets are predominantly viscous but also exhibit elastic properties. As the salt concentration is reduced, their elastic modulus, viscosity and surface tension increase. Our findings show that salt concentration has a strong influence on the rheology and dynamics of protein condensates suggesting an important role of electrostatic interactions for their material properties. arXiv:1809.09832v2 [cond-mat.soft] 6 Dec 2018 arXiv:1809.09832v2 [cond-mat.soft]
Phase separated macromolecules play essential roles in many biological and synthetic systems. We extend sessile droplet tensiometry to work with small quantities of such ultra-low surface tension droplets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.