The industrial activities of the last century have caused massive increases in human exposure to heavy metals. Mercury, lead, chromium, cadmium, and arsenic have been the most common heavy metals that induced human poisonings. Here, we reviewed the mechanistic action of these heavy metals according to the available animal and human studies. Acute or chronic poisonings may occur following exposure through water, air, and food. Bioaccumulation of these heavy metals leads to a diversity of toxic effects on a variety of body tissues and organs. Heavy metals disrupt cellular events including growth, proliferation, differentiation, damage-repairing processes, and apoptosis. Comparison of the mechanisms of action reveals similar pathways for these metals to induce toxicity including ROS generation, weakening of the antioxidant defense, enzyme inactivation, and oxidative stress. On the other hand, some of them have selective binding to specific macromolecules. The interaction of lead with aminolevulinic acid dehydratase and ferrochelatase is within this context. Reactions of other heavy metals with certain proteins were discussed as well. Some toxic metals including chromium, cadmium, and arsenic cause genomic instability. Defects in DNA repair following the induction of oxidative stress and DNA damage by the three metals have been considered as the cause of their carcinogenicity. Even with the current knowledge of hazards of heavy metals, the incidence of poisoning remains considerable and requires preventive and effective treatment. The application of chelation therapy for the management of metal poisoning could be another aspect of heavy metals to be reviewed in the future.
The complicated capillary network induced by angiogenesis is one of the main reasons of unsuccessful cancer therapy. A multi-scale mathematical method which simulates drug transport to a solid tumor is used in this study to investigate how capillary network structure affects drug delivery. The mathematical method involves processes such as blood flow through vessels, solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The effect of heterogeneous dynamic network on interstitial fluid flow and drug delivery is investigated by this multi-scale method. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. Finally, convection-diffusion equation is used to simulate drug delivery. Three approaches are used to simulate drug transport based on the developed mathematical method: without a vascular network, using a static vascular network, and a dynamic vascular network. The avascular approach predicts more uniform and higher drug concentration than vascular approaches since the simplified assumptions are implemented in this method. The dynamic network which uses more realistic assumptions predicts more irregular blood vessels, high interstitial pressure, and more heterogeneity in drug distribution than other two approaches.
Context: COVID-19 is a novel coronavirus that causes a severe infection in the respiratory system. Nigella sativa L. (Ranunculaceae) is an annual flowering plant used traditionally as a natural food supplement and multipurpose medicinal agent. Objective: The possible beneficial effects of N. sativa, and its constituent, thymoquinone (TQ) on COVID-19 were reviewed. Methods: The key words including, COVID-19, N. sativa, thymoquinone, antiviral effects, anti-inflammatory and immunomodulatory effects in different databases such as Web of Science (ISI), PubMed, Scopus, and Google Scholar were searched from 1990 up to February 2021. Results: The current literature review showed that N. sativa and TQ reduced the level of pro-inflammatory mediators including, IL-2, IL-4, IL-6, and IL-12, while enhancing IFN-c. Nigella sativa and TQ increased the serum levels of IgG1 and IgG2a, and improved pulmonary function tests in restrictive respiratory disorders. Discussion and conclusions: These preliminary data of molecular docking, animal, and clinical studies propose N. sativa and TQ might have beneficial effects on the treatment or control of COVID-19 due to antiviral, anti-inflammatory and immunomodulatory properties as well as bronchodilatory effects. The efficacy of N. sativa and TQ on infected patients with COVID-19 in randomize clinical trials will be suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.